[1] 刘建章. 核结构材料[M]. 北京: 化学工业出版社, 2007: 199-120. Liu Jianzhang. Nuclear structural materials[M]. Beijing: Chemical Industry Press, 2007: 199-120.
[2] Gérard R, Somville F. Situation of the baffle-former bolts in Belgian units[C]. 17th International Conference on Nuclear Engineering, Brussels, Belgium, July 12-16, 2009.
[3] IAEA. Assessment and Management of Ageing of Major Nuclear Power Plant Components Important to Safety: PWR Vessel Internals[R]. Vienna: IAEA, 2007.
[4] 杨武. 辐照促进应力腐蚀破裂研究的进展[J]. 材料保护, 1994(2): 1-4. Yang Wu. The progress of irradiation assisted stress corrosion cracking study[J]. Material Protection, 1994(2): 1-4.
[5] Wiedersich H, Okamoto P R, Lam N Q. A theory of radiation-induced segregation in concentrated alloys[J]. Journal of Nuclear Materials. 1979, 83(1): 98-108.
[6] Pathania. Analytical Transmission Electron Microscopy (ATEM) characterization of stress-corrosion cracks in LWR-irradiated austenitic stainless steel core components[R]. California: EPRI, 2003.
[7] Was G S. Fundamentals of radiation materials science: Metals and alloys[M]. Berlin: Springer, 2007: 805-809.
[8] Chung H M, Ruther W E, Sanecki J E, et al. Irradiation-assisted stress corrosion cracking of austenitic stainless steels: recent progress and new approaches[J]. Journal of Nuclear Materials, 1996, 239: 61-79.
[9] Shoji T, Suzuki S, Raja K S. Current status and future of IASCC research[J]. Journal of Nuclear Materials, 1998, 258-263: 241-251.
[10] Nakahigashi S, Kodama M, Fukuya K, et al. Effects of neutron irradiation on corrosion and segregation behavior in austenitic stainless steels[J]. Journal of Nuclear Materials, 1991, 179-181: 1061-1064.
[11] McNeil M B. Irradiation assisted stress corrosion cracking[J]. Nuclear Engineering and Design, 1998, 181(1-3): 55-60.
[12] Busby J T, Was G S, Kenik E A. Isolating the effect of radiationinduced segregation in irradiation-assisted stress corrosion cracking of austenitic stainless steels[J]. Journal of Nuclear Materials, 2002, 302 (1): 20-40.
[13] Fukuya K, Fujii K, Nishioka H, et al. A prediction model of IASCC initiation stress for bolts in PWR core internals[J]. Nuclear Engineering and Design, 2010, 240(3): 473-481.
[14] Fournier L, Sencer B H, Was G S, et al. The influence of oversized solute additions on radiation-induced changes and post-irradiation intergranular stress corrosion cracking behavior in high-purity 316 stainless steels[J]. Journal of Nuclear Materials, 2003, 321(2-3): 192-209.
[15] Zhou R S, West Elaine A, Jiao Z J, et al. Irradiation-assisted stress corrosion cracking of austenitic alloys in supercritical water[J]. Journal of Nuclear Materials, 2009, 395(1-3): 11-22.
[16] Kenik E A, Jones R H, Bell G E C. Irradiation-assisted stress corrosion cracking[J]. Journal of Nuclear Materials, 1994, 212-215: 52-59. 图5 起始阀值应力与中子注量关系 Fig. 5 Relationship between stress threshold and neutron fluence 82 科技导报2014,32(20) www.kjdb.org
[17] Miura T, Fujii K, Fukuya K, et al. Characterization of deformation structure in ion-irradiated stainless steels[J]. Journal of Nuclear Materials, 2009, 386-388: 210-213.
[18] 徐超亮, 王荣山, 黄平, 等. 不锈钢中子辐照加速应力腐蚀开裂的带 电粒子辐照模拟[J]. 材料导报, 2012(26): 150-153. Xu Chaoliang, Wang Rongshan, Huang Ping, et al. Charged-particles irradiation simulating neutron irradiation assisted strain corrosion cracking in stainless steel[J]. Materials Review, 2012(26): 150-153.
[19] Pathania R S, Nelson J L. The use of proton irradiation to understand IASCC in LWR cores[R]. California: EPRI, 2001.
[20] Cookson J M, Carter Jr R D, Damcott D L, et al. Irradiation assisted stress corrosion cracking of controlled purity 304L stainless steels[J]. Journal of Nuclear Materials, 1993, 202(1-2): 104-121.
[21] Kondou K, Hasegawa A, Abe K. Study on irradiation induced corrosion behavior in austenitic stainless steel using hydrogen-ion bombardment[J]. Journal of Nuclear Materials, 2004, 329-333 :652-656.
[22] Was G S, Allen T. Intercomparison of microchemical evolution under various types of particle irradiation[J]. Journal of Nuclear Materials, 1993, 205: 332-338.
[23] Lee J H, Fukuda T, Kakeshita T. Isothermal martensitic transformation in sensitized SUS304 austenitic stainless steel at cryogenic temperature[J]. Materials Transactions, 2009, 50(3): 473-478.
[24] Onchi T, Dohi K, Soneda N, et al. Mechanism of irradiation assisted stress corrosion crack initiation in thermally sensitized 304 stainless steel[J]. Journal of Nuclear Materials, 2005, 340(2-3): 219-236.
[25] 李红梅, 杨武, 吕战鹏. 304不锈钢在含硼和锂的高温水中的应力腐 蚀破裂和断口分析[J]. 中国腐蚀与防护学报. 2004(1): 16-19. Li Hongmei, Yang Wu, Lü Zhanpeng. Fractography of the stress corrosion cracking specimens of type 304 stainless steel in high temperature water containing boric and lithium ion[J]. Journal of corrosion and protection, 2004(1): 16-19.
[26] Leclercq S. Prediction of the effects of radiation for reactor pressure vessel and in-core materials using multi-scale modeling-60 years foreseen plant lifetime(PERFORM 60)[R]. France: Institute of Safety Research, 2008.
[27] Chen Y, Chopra O K, Soppet W K. Irradiation-assisted stress corrosion cracking of austenitic stainless steels and Alloy 690 from Halden Phase-II Irradiations[R]. Argonne: NRC, 2008.
[28] Ackland G. Controlling radiation damage[J]. Science, 2010, 327: 1587-1588.
[29] Bai X M, Voter A F, Hoagland R G, et al. Efficient annealing of radiation damage near grain boundaries via interstitial emission[J]. Science, 2010, 327: 1631-1634.
[30] Gertsman V Y, Bruemmer S M. Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys[J]. Acta Mater, 2001, 49(9): 1589-1598.
[31] Kokawa H, Shimada M, Michiuchi M, et al. Arrest of weld-decay in 304 austenitic stainless steel by twin-induced grain boundary engineering[J]. Acta Mater, 2007, 55(16): 5401-5407.
[32] Ford F P. Corrosion assisted cracking of stainless and low-Alloyed steel in LWR-environment[R]. New York: EPRI, 1987.
[33] Takakura K, Nakata K, Kubo N, et al. IASCC Evaluation Method of Irradiated Cold Worked 316ss Baffle Former Bolt in PWR Primary Water[C]//Proceedings of the ASEM Pressure Vessels and Piping Conference. Prague, Czech Republic: ASTM, 2010: 1071-1080.
[34] Scott P. A review of irradiation assisted stress corrosion cracking[J]. Journal of Nuclear Materials, 1994, 211(2): 101-122.
[35] Ishigure K, Nukii T, Ono S. Analysis of water radiolysis in relation to stress corrosion cracking of stainless steel at high temperatures-Effect of water radiolysis on limiting current densities of anodic and cathodic reactions under irradiation[J]. Journal of Nuclear Materials, 2006, 350(1): 56-65.
[36] Chopra O K, Rao A S. A review of irradiation effects on LWR core internal materials-IASCC susceptibility and crack growth rates of austenitic stainless steels[J]. Journal of Nuclear Materials, 2011, 409 (3): 235-256.
[37] 杨武. 核电设备耐蚀材料及其评价技术[J]. 机械工程材料. 1994(2): 16-19. Yang Wu. Corrosion resistant materials used in nuclear power plants and their evaluation techniques[J]. Materials for Mechanical Engineering, 1994(2): 16-19
[38] 李红梅, 杨武, 吕战鹏. 奥氏体不锈钢辐照促进应力腐蚀破裂的模拟 研究[J]. 腐蚀与防护, 2000(12): 542-545. Li Hongmei, Yang Wu, Lü Zhanpeng. Simulation research on irradiation assisted stress corrosion cracking of austenitic stainless steel[J]. Corrosion & Protection, 2000(12): 542-545.
[39] 段远刚, 许斌, 唐传宝. 围板连接螺栓的辐照促进应力腐蚀裂纹研究[J]. 核动力工程, 2007(2): 62-65. Duan Yuangang, Xu Bin, Tang Chuanbao. Study on irradiationassisted stress corrosion cracking of baffle-former bolts[J]. Nuclear Power Engineering, 2007(2): 62-65.
[40] Glass R S, Van Konynenburg R A, Overturf G E. Corrosion processes of austenitic stainless steels and copper-based materials in gammairradiated aqueous environments[C]. Corrosion 86 NACE, Houston, TX, Mar 17-21, 1986.
[41] Stellwag B, Staudt U. Water chemistry practice at German BWR plants[J]. Powerplant Chemistry, 2005, 7(2): 95-106.
[42] 乔建生, 钟巍华, 杨文. 国产A508——3钢的小冲杆试验研究及问题 探讨[J]. 华北电力大学学报, 2011(3): 106-112. Qiao Jiansheng, Zhong Weihua, Yang Wen. Small punch test of the domestic A508-3 steel and issue argumentation[J]. Journal of Noah China Electric Power University, 2011(3): 106-112.