In order to evaluate the stability of cement pillar scientifically and accurately, an analytic evaluation method that is based on the theory of statically indeterminate structure and numerical simulation is proposed. An artificial pillar is simplified to a statically indeterminate structure and the maximum stress is calculated by an indeterminate model using the comprehensive action of tailings backfill lateral pressure, top loose rock pressure and its own gravity. The pillar stability is tested by uniaxial compressive test data on cemented waste-rock and the finite element analysis software Midas, which is used to simulate the loading force and output the effective stress and strain-displacement. The cement pillar of Dahongshan copper mine is used as an example, and it is shown that the maximum stresses by statically indeterminate theory and simulation software are 6.27 MPa and 3.55 MPa, respectively, the maximum strain-displacement is 40.46 mm, and the cemented waste-rock uniaxial compressive strength is 10.9 MPa. All of the above shows that it is feasible to test the pillar stability by the method of statically indeterminate and numerical simulation.
YU Jian
,
WANG Guihuang
. Analysis of Cement Pillar Stability Based on Hyperstatic Structure Theory and Numerical Simulation[J]. Science & Technology Review, 2014
, 32(22)
: 34
-37
.
DOI: 10.3981/j.issn.1000-7857.2014.22.004
[1] 王洪武, 吴爱祥. 胶结充填体矿柱结构可靠性设计方法[J]. 黄金, 2003, 24(3): 27-30. Wang Hongwu, Wu Aixiang. The reliability design method of consolidated filling pillar structure[J]. Gold, 2003, 24(3): 27-30.
[2] 杨正松. 大红山铜矿高效低损无废开采技术研究[D]. 长沙: 中南大 学, 2011. Yang Zhengsong. Research on high efficiency and low loss and wasteless technique for Dahongshan copper mine[D]. Changsha: Central South University, 2011.
[3] Hassani F R, Mortazavi A, Shabani M. An investigation of mechanisms involved in backfill-rock mass behaviour in narrow vein mining[J]. Journal of the South African Institute of Mining and Metallurgy, 2008, 108(8): 463-472.
[4] 杨涛波, 王晓军, 熊雪强, 等. 房柱法深部开采人工矿柱合理宽度设计[J]. 有色金属科学与工程, 2011, 2(2): 84-85. Yang Taobo, Wang Xiaojun, Xiong Xueqiang, et al. Reasonable width design of artificial pillar for deep mining by room-and-pillar method[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 84-85.
[5] 张新国, 江宁, 张玉江, 等. 矸石膏体充填材料力学特性试验[J]. 金属 矿山, 2012(12): 127-135. Zhang Xinguo, Jiang Ning, Zhang Yujiang, et al. Study on mechanical properties of coal waste paste filling materials[J]. Metal Mine, 2012 (12): 127-135.
[6] 陈庆发, 古德生, 周科平, 等.对称协同开采人工矿柱失稳的突变理论 分析[J]. 中南大学学报: 自然科学版, 2012, 43(6): 2338-2342. Chen Qingfa, Gu Desheng, Zhou Keping, et al. Analysis of catastrophe theory for artificial pillar instability in symmetric synergistic mining[J]. Journal of Central South University: Natural Sciences Technology, 2012, 43(6): 2338-2342.
[7] Prathap G, Varadan T K. The inelastic large deformation of beams[J]. Journal of Applied Mechanics, 1976, 43(4): 689-690.
[8] Lo C C, Gupta S D. Bending of a nonlinear rectangular beam in large deflection[J]. Journal of Applied Mechanics, 1978, 45(1): 213-215.
[9] 李会知, 杨建中, 刘敏姗. 均布载荷作用下两端固支梁的弹塑性分析[J]. 河海大学学报: 自然科学版, 2005, 33(4): 447-451. Li Huizhi, Yang Jianzhong, Liu Minshan. Elastic-plastic analysis of beams fixed at two ends subjected to uniformly-distributed loads[J]. Journal of Hohai University: Natural Sciences, 2005, 33(4): 447-451.
[10] 吴东旭, 曾庆田, 魏仁旭. 大红山铜矿铜铁合采矿柱废石胶结充填工 艺技术研究[J]. 湖南有色金属, 2012, 28(6): 1-3. Wu Dongxu, Zeng Qingtian, Wei Renxu. Study on using waste rock cemented filling technology for copper and iron commingling in Dahongshan copper mine[J]. Hunan Nonferrous Metals, 2012, 28(6): 1-3.
[11] 刘鸿文. 材料力学[M]. 北京: 高等教育出版社, 2011. Liu Hongwen. Mechanics of materials[M]. Beijing: Higher Education Press, 2011.
[12] 陈锦艳. 有固定端的等截面单跨超静定梁的快速解法[J]. 中国科技 信息, 2008(18): 75-77. Chen Jinyan. Fast solution of the statically indeterminate beam with constant cross section and single-span with fixed-ends[J]. China Science and Technology Information, 2008(18): 75-77.