Image reconstruction using classic multiple signal classification (MUSIC) algorithms contains little target information. To solve this problem, time reversal matrix theory was adopted to obtain the image of scattering objects. The positioning accuracy of the modified MUSIC algorithm and its relationship with array element space, signal-to-noise ratio, and difference of signal incident angle were analyzed. Ipswich experimental datasets indicate that the improved image reconstruction algorithm realized better image reconstruction, providing evidence for advantages of the algorithm and other algorithms in determination of the morphology of obstacles. Comparative experiment on non-symmetric double-circle metal cylinder shows that the algorithm achieved better image reconstruction in high frequency conditions, and the higher the frequency, the smaller the eigenvalue of image reconstruction, and the higher the resolution.
LIU Yuying
. Determination of Morphological Data of Obstacles Based on Time Reversal Matrix Theory[J]. Science & Technology Review, 2014
, 32(23)
: 33
-38
.
DOI: 10.3981/j.issn.1000-7857.2014.23.004
[1] 欧阳华, 吴正国, 尹为民. dq变换和MUSIC算法在间谐波检测中的应 用[J]. 电力系统及其自动化学报, 2013, 24(5): 83-87. Ouyang Hua, Wu Zhengguo, Yin Weimin. Application of dq transform and MUSIC algorithm in interharmonic detection[J]. Proceedings of the Chinese Society of Universities, 2013, 24(5): 83-87.
[2] Schmidt R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280.
[3] Haber F, Zoltowski M. Spatial spectrum estimation in a coherent signal environment using an array in motion[J]. IEEE Transactions on Antennas and Propagation, 1986, 3(5): 301-310.
[4] Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1989, 37(8): 984-995.
[5] Krim H, Viberg M. Two decades of array signal processing[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94.
[6] Chargé P, Wang Y, Saillard J. An extended cyclic MUSIC algorithm[J]. IEEE Transactions on Signal Processing, 2003, 51(7): 1695-1701.
[7] Kirsch A. The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media[J]. Inverse Problems, 2002, 18(4): 1025.
[8] Tsakalides P, Nikias C L. The robust covariation-based MUSIC (ROCMUSIC) algorithm for bearing estimation in impulsive noise environments[J]. IEEE Transactions on Signal Processing, 1996, 44(7): 1623-1633.
[9] Ammari H, Iakovleva E, Lesselier D. A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency[J]. Multiscale Modeling & Simulation, 2005, 3(3): 597-628.
[10] 刘剑, 于红旗, 黄知涛, 等. 基于二阶预处理的共轭扩展MUSIC算法[J]. 系统工程与电子技术, 2008, 30(1): 57-60. Liu Jian, Yu Hongqi, Huang Zhitao, et al. Conjugate extended MUSIC algorithm based on second-order preprocessing[J]. Systems Engineering and Electronics, 2008, 30(1): 57-60.
[11] Wang Y M, Chew W C. An iterative solution of the two-dimensional electromagnetic inverse scattering problem[J]. International Journal of Imaging Systems and Technology, 1989, 1(1): 100-108.
[12] Lin C Y, Kiang Y W. Inverse scattering for conductors by the equivalent source method[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(3): 310-316.
[13] Hua Y. A pencil-MUSIC algorithm for finding two-dimensional angles and polarizations using crossed dipoles[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(3): 370-376.
[14] 杨鹏, 杨峰, 聂在平, 等. MUSIC算法在柱面共形天线阵DOA估计中 的应用研究[J]. 电波科学学报, 2008, 23(2): 288-291. Yang Peng, Yang Feng, Nie Zaiping, et al. DOA estimation of cylindrical conformal array by MUSIC algorithm[J]. Chinese Journal of Radio Science, 2008, 23(2): 288-291.
[15] 何轲, 相敬林, 韩鹏, 等. 空间任意阵的MUSIC算法性能研究[J]. 计 算机测量与控制, 2010(3): 688-690. He Ke, Xiang Jinglin, Han Peng, et al. Performance analysis of MUSIC for arbitary array[J]. Computer Measurement & Control, 2010 (3): 688-690.