Reviews

Novel Photoionization Sources for Ion Mobility Spectrometry and Their Applications

  • WANG Weiguo ,
  • CHEN Chuang ,
  • CHENG Shasha ,
  • PENG Liying ,
  • ZHOU Qinghua ,
  • LI Haiyang
Expand
  • 1. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2014-06-04

  Revised date: 2014-06-11

  Online published: 2014-08-26

Abstract

Ion mobility spectrometry is widely used for field detection of explosives and illegal drugs due to its satisfactory features. Ionization source is the key part of ion mobility spectrometry, which is directly related to the sensitivity and selectivity. Recently, nonirradioactive ionization sources,represented by photon ionization source,have become a hot field. This paper introduces various ionization sources based on VUV lamp,especially dopant-assisted positive and negative ionization sources developed in our labrotory and their applications in detection of envoromental pollution and typical explosives.

Cite this article

WANG Weiguo , CHEN Chuang , CHENG Shasha , PENG Liying , ZHOU Qinghua , LI Haiyang . Novel Photoionization Sources for Ion Mobility Spectrometry and Their Applications[J]. Science & Technology Review, 2014 , 32(23) : 67 -73 . DOI: 10.3981/j.issn.1000-7857.2014.23.010

References

[1] Roscioli K M, Davis E, Siems W F, et al. Modular ion mobility spectrometer for explosives detection using corona ionization[J]. Analytical Chemistry, 2011, 83(15): 5965-5971.
[2] Kanu A B, Hill H H. Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas[J]. Talanta, 2007, 73(4): 692-699.
[3] Guerra-Diaz P, Gura S, Almirall J R. Dynamic planar solid phase microextraction-ion mobility spectrometry for rapid field air sampling and analysis of illicit drugs and explosives[J]. Analytical Chemistry, 2010, 82(7): 2826-2835.
[4] Mäkinen M A, Anttalainen O A, Sillanpää M E. Ion mobility spectrometry and its applications in detection of chemical warfare agents[J]. Analytical Chemistry, 2010, 82(23): 9594-9600.
[5] Steiner W E, Klopsch S J, English W A, et al. Detection of a chemical warfare agent simulant in various aerosol matrixes by ion mobility timeof-flight mass spectrometry[J]. Analytical Chemistry, 2005, 77(15): 4792-4799.
[6] Griffin G W, Dzidic I, Carroll D I, et al. Ion mass assignments based on mobility measuremets. Validity of plasma chromatographic mass mobility correlations[J]. Analytical Chemistry, 1973, 45(7): 1204-1209.
[7] Karasek F W, Denney D W, De Decker E H. Plasma chromatography of normal alkanes and its relation to chemical ionization mass spectrometry[J]. Analytical Chemistry, 1974, 46(8): 970-973.
[8] Spangler G E, Collins C I. Reactant ions in negative ion plasma chromatography[J]. Analytical Chemistry, 1975, 47(3): 393-402.
[9] Bairn M A, Eatherton R L, Hill H H. Ion mobility detector for gas chromatography with a direct photoionization source[J]. Analytical Chemistry, 1983, 55(11): 1761-1766.
[10] Leasure C S, Fleischer M E, Anderson G K, et al. Photoionization in air with ion mobility spectrometry using a hydrogen discharge lamp[J]. Analytical Chemistry, 1986, 58(11): 2142-2147.
[11] Tabrizchi M, Khayamian T, Taj N. Design and optimization of a corona discharge ionization source for ion moblity spectrometry[J]. Review of Scientific Instruments, 2000, 71(6): 2321-2328.
[12] Tabrizchi M, Rouholahnejad F. Corona discharge ion mobility spectrometry at reduced pressures[J]. Review of Scientific Instruments, 2004, 75(11): 4656.
[13] Khayamian T, Tabrizchi M, Jafari M T. Analysis of 2, 4, 6-trinitrotoluene, pentaerythritol tetranitrate and cyclo-1, 3, 5-trimethylene-2, 4, 6-trinitramine using negative corona discharge ion mobility spectrometry[J]. Talanta, 2003, 59(2): 327-333.
[14] Wittmer D, Chen Y H, Luckenbill B K, et al. Electrospray ionization ion mobility spectrometry[J]. Analytical Chemistry, 1994, 66(14): 2348-2355.
[15] Khayamian T, Jafari M T. Design for electrospray ionization-ion mobility spectrometry[J]. Analytical Chemistry, 2007, 79(8): 3199-3205.
[16] Adamov A, Mauriala T, Teplov V, et al. Characterization of a high resolution drift tube ion mobility spectrometer with a multi-ion source platform[J]. International Journal of Mass Spectrometry, 2010, 298(1-3): 24-29.
[17] Harper J D, Charipar N A, Mulligan C C, et al. Low-temperature plasma probe for ambient desorption ionization[J]. Analytical Chemistry, 2008, 80(23): 9097-9104.
[18] Garcia-Reyes J F, Harper J D, Salazar G A, et al. Detection of explosives and related compounds by low-temperature plasma ambient ionization mass spectrometry[J]. Analytical Chemistry, 2011, 83(3): 1084-1092.
[19] Dorfner R, Ferge T, Yeretzian C, et al. Laser mass spectrometry as online sensor for industrial process analysis: Process control of coffee roasting[J]. Analytical Chemistry, 2004, 76(5): 1386-1402.
[20] Hanley L, Zimmermann R. Light and molecular ions: The emergence of vacuum UV single-photon ionization in MS[J]. Analytical Chemistry, 2009, 81(11): 4174-4182.
[21] Bairn M A, Eatherton R L, Hill H H. Ion mobility detector for gas chromatography with a direct photoionization source[J]. Analytical Chemistry, 1983, 55(11): 1761-1766.
[22] Leasure C S, Fleischer M E, Anderson G K, et al. Photoionization in air with ion mobility spectrometry using a hydrogen discharge lamp[J]. Analytical Chemistry, 1986, 58(11): 2142-2147.
[23] Sielemann S, Baumbach J I, Schmidt H, et al. Quantitative analysis of benzene, toluene, and m-xylene with the use of a UV-ion mobility spectrometer[J]. Field Analytical Chemistry and Technology, 2000, 4 (4): 157-169.
[24] Sielemann S, Baumbach J I, Schmidt H, et al. Detection of alcohols using UV-ion mobility spetrometers[J]. Analytica Chimica Acta, 2001, 431(2): 293-301.
[25] Eiceman G A, Fleischera M E, Leasurea C S. Sensing of petrochemical fuels in soils using headspace analysis with photoionization-ion mobility spectrometry[J]. International Journal of Environmental Analytical Chemistry, 1987, 28(4): 279-296.
[26] Vautz W, Sielemann S, Baumbach J I. Determination of terpenes in humid ambient air using ultraviolet ion mobility spectrometry[J]. Analytica Chimica Acta, 2004, 513(2): 393-399.
[27] Sielemann S, Baumbach J I, Schmidt H, et al. Quantitative analysis of benzene, toluene, and m-xylene with the use of a UV-ion mobility spectrometer[J]. Field Analytical Chemistry and Technology, 2000, 4 (4): 157-169.
[28] Sielemann S, Baumbach J I, Schmidt H, et al. Detection of alcohols using UV-ion mobility spectrometers[J]. Analytica Chimica Acta, 2001, 431(2): 293-301.
[29] Bödeker B, Vautz W, Baumbach J I. Peak comparison in MCC/IMSdata: Searching for potential biomarkers in human breath data[J]. International Journal for Ion Mobility Spectrometry, 2008, 11(1): 89-93.
[30] Maddula S, Blank L M, Schmid A, et al. Detection of volatile metabolites of Escherichia coli by multi capillary column coupled ion mobility spectrometry[J]. Analytical and Bioanalytical Chemistry, 2009, 394(3): 791-800.
[31] Tabrizchi M, Bahrami H. Improved design for the atmospheric pressure photoionization source[J]. Analytical Chemistry, 2011, 83(23): 9017-9023.
[32] 温萌, 蒋蕾, 刘巍, 等. 丙酮-辅助光电离离子迁移谱检测TATP炸药 的研究[J]. 质谱学报, 2014, 待发表. Wen Meng, Jiang Lei, Liu Wei, et al. Acetone-assisted photoionization ion transfer spectrum detection of TATP[J]. Journal of Chinese Mass Spectrometry Society, 2014, Accepted.
[33] Walls C J, Swensonb O F, Gillispie G D. Real-time monitoring of chlorinated aliphatic compounds in air using ion mobility spectrometry with photoemissive electron sources[C]//Proceedings of SPIE Volume 3534. Environmental Monitoring and Remediation Technologies, 1998: 290-298, doi:10.1117/12.339007.
[34] Begley P, Corbin R, Foulger B E, et al. Photoemissive ionisation source for ion mobility detectors[J]. Journal of Chromatography, 1991, 588(1): 239-249.
[35] Chen C, Dong C, Du Y, et al. Bipolar ionization source for ion mobility spectrometry based on vacuum ultraviolet radiation induced photoemission and photoionization[J]. Analytical Chemistry, 2010, 82 (10): 4151-4157.
[36] Cheng S S, Wang W G, Zhou Q H, et al. Fast switching of CO3-(H2O)n and O2-(H2O)n reactant ions in dopant-assisted negative photoionization ion mobility spectrometry for explosives detection[J]. Analytical Chemistry, 2014, 86(5), 2687-2693.
[37] Puton J, Nousiainen M, Sillanpää M. Ion mobility spectrometers with doped gases[J]. Talanta, 2008, 76(5): 978-987.
[38] ProctorCJ,ToddJFJ.Alternativereagentionsforplasma chromatography[J]. Analytical Chemistry, 1984, 56(11): 1794-1797.
[39] Lawrence A H, Neudorfl P. Detection of ethylene glycol dinitrate vapors by ion mobility spectrometry using chloride reagent ions[J]. Analytical Chemistry, 1988, 60(2): 104-109.
[40] Cheng S S, Dou J, Wang W G, et al. Dopant-assisted negative photoionization ion mobility spectrometry for sensitive detection of explosives[J]. Analytical Chemistry, 2013, 85(1): 319-326.
[41] Crawford C L, Hill H H. Comparison of reactant and analyte ions for 63Nickel, corona discharge, and secondary electrospray ionization sources with ion mobility-mass spectrometry[J]. Talanta, 2013, 107: 225-232.
[42] Saravanan N P, Venugopalan S, Senthilkumar N, et al. Voltammetric determination of nitroaromatic and nitramine explosives contamination in soil[J]. Talanta, 2006, 69(3): 656-662.
[43] Evans C S, Sleeman R, Luke J, et al. A rapid and efficient mass spectrometric method for the analysis of explosives[J]. Rapid Communications in Mass Spectrometry, 2002, 16(19): 1883-1891.
Outlines

/