The main material of the crude oil gathering and transportation pipeline in Tahe oilfield is 20# steel. The pipeline surface corrosion is mainly the wall pitting corrosion, with deposits in the pitting region. In order to study the corrosion behavior of sediments on the ground crude metal pipeline, based on the analysis on the sediment types on the inner wall of the pipeline, the cover of 20# carbon steel specimen with or without sediments is hanged in the autoclave to simulate the scene corrosion experiment, using the weight loss method, the polarization curve test, the wire beam electrode test and the scanning electron microscopy. With 20# carbon steel corrosion sediments under the coverage of the test piece, the weightlessness velocity, the corrosion process, the corrosion potential distribution and the SEM characteristics are determined, with no sediment covering the 20# carbon steel specimen. It is shown that in the area of 20# carbon steel without sediment covered, the corrosion weight loss rate is smaller than that with sediments covered; both corrosion processes are governed by the diffusion control, the latter by promoting the anodic process and reducing the corrosion potential and the corrosion resistance; the distribution of the corrosion potential does not change with time, the general corrosion, the corrosion potential distribution varies with time, with prominent pitting characteristics.
GAO Qiuying
,
ZHANG Jiangjiang
,
YANG Zuguo
,
YANG Dongming
,
LIU Jining
,
ZANG Hanyu
,
ZHU Yuanyuan
,
ZHANG Tao
. Effects of Sediments on the Corrosion Behavior of 20# Carbon Steel Pipe[J]. Science & Technology Review, 2014
, 32(24)
: 35
-39
.
DOI: 10.3981/j.issn.1000-7857.2014.24.004
[1] 张江江, 张志宏, 羊东明, 等. 油气田地面集输碳钢管线内腐蚀检测技 术应用[J]. 材料导报, 2012, 26(S2): 118-122. Zhang Jiangjiang, Zhang Zhihong, Yang Dongming, et al. Corrosion detection technology for surface gathering carbon steel pipeline in oil and gas field[J]. Materials Review, 2012, 26(S2): 118-122.
[2] 唐世春, 张志宏, 张江江. 塔河油田点蚀测试及评价技术应用[J]. 科技 导报, 2013, 31(32): 42-48. Tang Shichun, Zhang Zhihong, Zhang Jiangjiang. Application of test and evaluation technology of pitting corrosion in Tahe oilfield[J]. Science & Technology Review, 2013, 31 (32): 42-48.
[3] 张志宏, 张江江, 刘冀宁, 等. 塔河油田腐蚀监测工艺评价及优化[C]. 全国油气田管道腐蚀检测、防护预警技术科技创新技术交流会. 昆 明, 8-14-18, 2012. Zhang Zhihong, Zhang Jiangjiang, Liu Jining, et al. Tahe oilfield corrosion monitoring process evaluation and optimization[C] //The National Oil and Gas Pipeline Corrosion Detection, Protection Warning Technology Innovation and Technological Exchanges Will. Kunming, August 14-18, 2012.
[4] 张江江, 黄鹏, 高淑红, 等. 超声C扫描检测技术在塔河油田管道检测 中的应用与评价[J]. 化工自动化及仪表, 2013, 40(11): 1355-1359. Zhang Jiangjiang, Huang Peng, Gao Shuhong, et al. Ultrasonic C-scan detection technology for pipe in spection and evaluation in Tahe oilfield[J]. Control and Instruments In Chemical Industry, 2013, 40(11): 1355-1359.
[5] 张志宏, 张江江, 高秋英, 等. 塔河油田某侧钻深井油管断裂失效原因 分析[J]. 科技导报, 2014, 32(7): 62-66. Zhang Zhihong, Zhang Jiangjiang, Gao Qiuying, et al. Analysis of rupture failure of sidetrack deep well pipe in Tahe oilfield[J]. Science & Technology Review, 2014, 32(7): 62-66.
[6] 张志宏, 张江江, 孙海礁, 等. 塔河油田某深井钻杆断裂原因[J]. 腐蚀 与防护, 2014, 35(2): 192-195. Zhang Zhihong, Zhang Jiangjiang, Sun Haijiao, et al. Fracture reason of a deep well drill pipe in Tahe oilfield[J]. Corrosion & Protection, 2014, 35(2): 192-195.
[7] 张江江, 刘冀宁. 表面工程应用实例[例33] 三元牺牲阳极镀层在油田 管道防腐中的应用[J]. 中国表面工程, 2014, 27(1): F0002. Zhang Jiangjiang, Liu Jining. Surface engineering application examples[Example 33] Application of ternary sacrificial anode coating for oilfield pipeline[J]. China Surface Engineering, 2014, 27(1): F0002.
[8] 石鑫, 张志宏, 刘强, 等. 塔河某单井管道频繁穿孔原因[J]. 油气储 运, 2011, 30(11): 848-850. Shi Xin, Zhang Zhihong, Liu Qiang, et al. Reason analysis on the corrosion to leak pipeline of well[J]. Oil & Gas Storage and Transportation, 2011, 30(11): 848-850.
[9] 张春颜, 钱文辉, 郑玉萍, 等. 深井油管CO2腐蚀规律及其应用研究[J]. 科技导报, 2012, 30(36): 47-51. Zhang Chunyan, Qian Wenhui, Zhen Yuping, et al. CO2 corrosion law and its applation to analysis of tubing in deep and super deep wells[J]. Science & Technology Review, 2012, 30(36): 47-51.
[10] 王树涛, 郑新艳, 李明志, 等. 抗硫套管钢P110SS在高含H2S/CO2条 件下的硫化物应力腐蚀破裂敏感性[J]. 腐蚀与防护, 2013, 34(3): 189-192. Wang Shutao, Zhen Xinyan, Li Mingzhi, et al. Stress corrosion cracking sensitivity of sulfide-resistant csaing steel P110SS in hyperbaric H2S/CO2 environments[J]. Corrosion & Protection, 2013, 34 (3): 189-192.
[11] 唐电, 陈再良. 电化学材料科学的发展前景[J]. 科技导报, 2002, 20 (6): 26-28. Tang Dian, Chen Zailiang. Prospects for development of electrochemical materials science[J]. Science & Technology Review, 2002, 20(6): 26-28.
[12] 边莉, 金宗哲. Fe系E(pE)-pH图及随时间变化规律[J]. 全面腐蚀控 制, 2008, 22(3): 25-28. Bian Li, Jin Zongzhe. E(pE)-pH diagrams of Fe system and transformation accoring to time[J]. Total Corrosion Control, 2008, 22 (3): 25-28.