Reviews

Progress in Passive Behavior of Rebar in Concrete Environments

  • FENG Xingguo ,
  • CHEN Da ,
  • LU Xiangyu
Expand
  • 1. College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China;
    2. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Received date: 2014-04-29

  Revised date: 2014-06-10

  Online published: 2014-09-16

Abstract

This paper reviews the main characterization methods for studying passive behavior of rebar, introducing the application of open circuit potential (OCP), cyclic polarization, electrochemical impedance spectroscopy (EIS), Mott-Schottky plots, X-ray photoelectron spectroscopy (XPS), andmicro-Raman spectroscopy (μ-Raman) in passive behavior of rebar in concrete environments. In addition, the influence of Cl- ions, pH of solution, and stress on the passive behavior of rebar in concrete environments is discussed.With the increase of Cl- concentration and stress, or decrease of solution pH, the passivity of rebar degraded and the rebar was more susceptive to corrosion. Finally, further research prospect is presented.

Cite this article

FENG Xingguo , CHEN Da , LU Xiangyu . Progress in Passive Behavior of Rebar in Concrete Environments[J]. Science & Technology Review, 2014 , 32(25) : 81 -84 . DOI: 10.3981/j.issn.1000-7857.2014.25.014

References

[1] Poursaee A, Hansson C M. Reinforcing steel passivation in mortar and pore solution[J]. Cement and Concrete Research, 2007, 37(7): 1127-1133.
[2] AbdEIHaIeem S M, AbdEIAaI E E, AbdEIWanees S, et al. Environmental factors affecting the corrosion behaviour of reinforcing steel I. The early stage of passive film formation in Ca(OH)2 solutions[J]. Corrosion Science, 2010, 52(12): 3875-3882.
[3] AbdEIHaIeem S M, AbdEIWanees S, AbdEIAaI E E, et al. Environmental factors affecting the corrosion behavior of reinforcing steel II. Role of some anions in the initiation and inhibition of pitting corrosion of steel in Ca(OH)2 solutions[J]. Corrosion Science, 2010, 52 (2): 292-302.
[4] AbdEIAaI E E, AbdElWanees S, Diab A, et al. Environmental factors affecting the corrosion behavior of reinforcing steel III. Measurement of pitting corrosion currents of steel in Ca(OH)2 solutions under natural corrosion conditions[J]. Corrosion Science, 2009, 51(8): 1611-1618.
[5] Saremi M, Mahallati E. A study on chloride-induced depassivation of mild steel in simulated concrete pore solution[J]. Cement and Concrete Research, 2002, 32(12): 1915-1921.
[6] Ghods P, Isgor O B, Mcraeb G, et al. The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement[J]. Cement and Concrete Composites, 2009, 31(1): 2-11.
[7] Ye C Q, Hu R G, Dong S G, et al. EIS analysis on chloride-induced corrosion behavior of reinforcement steel in simulated carbonated concrete pore solutions[J]. Journal of Electroanalytical Chemistry, 2013, 688(1): 275-281.
[8] Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy[J]. Corrosion Science, 2010, 52(11): 3646-3653.
[9] Dong Z H, Shi W, Zhang G A, et al. The role of inhibitors on the repassivation of pitting corrosion of carbon steel in synthetic carbonated concrete pore solution[J]. Electrochimica Acta, 2011, 56(17): 5890-5897.
[10] 吴群, 刘玉, 杜荣归, 等. 氯离子对模拟混凝土孔溶液中钢筋钝性影响的电化学研究[J]. 金属学报, 2008, 44(3): 346-350. Wu Qun, Liu Yu, Du Ronggui, et al. Electrochemical study on the effect of chloride ions on the passivity of reinforcing steel in simulated concrete pore solutions[J]. Acta Metallurgica Sinica, 2008, 44(3): 346-350.
[11] Li D G, Feng Y R, Bai Z Q, et al. Influence of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution[J]. Electrochimica Acta, 2007, 52(28): 7877-7884.
[12] Ghods P, Isgor O B, Brown J R, et al. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties[J]. Applied Surface Science, 2011, 257(10): 4669-4677.
[13] Huet B, Hostis V L, Miserque F, et al. Electrochemical behavior of mild steel in concrete: Influence of pH and carbonate content of concrete pore solution[J]. Electrochimica Acta, 2005, 51(1): 172-180.
[14] 陈雯, 杜荣归, 胡融刚, 等. 模拟混凝土孔隙液中钢筋表面膜组成与腐蚀行为的关联[J]. 金属学报, 2011, 47(6): 735-742. Chen Wen, Du Ronggui, Hu Ronggang, et al. Correlation between composition of reinforcing steel surface film and steel corrosion behavior in simulated concrete pore solutions[J]. Acta Metallurgica Sinica, 2011, 47(6): 735-742.
[15] Demoulin A, Trigance C, Neff D, et al. The evolution of the corrosion of iron in hydraulic binders analysed from 46-and 260-year-old buildings[J]. Corrosion Science, 2010, 52(10): 3168-3179.
[16] Chen W, Du R G, Ye C Q, et al. Study on the corrosion behavior of reinforcing steel in simulated concrete pore solutions using in situ Raman spectroscopy assisted by electrochemical techniques[J]. Electrochimica Acta, 2010, 55(20): 5677-5682.
[17] Ghosh R, Singh D D N. Kinetics, mechanism and characterisation of passive film formed on hot dip galvanized coating exposed in simulated concrete pore solution[J]. Surface and Coatings Technology, 2007, 201(16/17): 7346-7359.
[18] Joiret S, Keddam M, Novoa X R, et al. Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH[J]. Cement and Concrete Composites, 2002, 24 (1): 7-15.
[19] 蒲心诚, 靳瑞冬. 灰砂硅酸盐混凝土的碱度与钢筋锈蚀[J]. 硅酸盐建筑制品, 1991(5): 1-5. Pu Xincheng, Jin Ruidong. Relationship between alkalinity of sandlime silicate concrete and the corrosion of rebar[J]. Portland Building Products, 1991(5): 1-5.
[20] 唐方苗, 徐晖, 陈雯, 等. 模拟混凝土孔隙液中钢筋电化学腐蚀行为及pH值的影响作用[J]. 功能材料, 2012, 42(2): 291-293. Tang Fangmiao, Xu Hui, Chen Wen, et al. Effect of pH on the electrochemical corrosion behavior of reinforcing steel in simulated concrete pore solutions[J]. Journal of Functional Materials, 2012, 42 (2): 291-293.
[21] 洪乃丰. 混凝土碱度与钢筋锈蚀[J]. 混凝土与水泥制品, 1990(5): 16-18. Hong Naifeng. Relationship between alkalinity of concrete and the corrosion of rebar[J]. China Concrete and Cement Products, 1990(5): 16-18.
[22] Zhang F, Pan J, Lin C. Localized corrosion behaviour of reinforcement steel in simulated concrete pore solution[J]. Corrosion Science, 2009, 51(9): 2130-2138.
[23] Luo H, Dong C F, Li X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride[J]. Electrochimica Acta, 2012, 64(1): 211-220.
[24] Li L, Sagues A A. Chloride corrosion threshold of reinforcing steel in alkaline solutions: Cyclic polarization behavior[J]. Corrosion Science, 2002, 58(4): 305-316.
[25] Bertolini L, Bolzoni F, Pastore T, et al. Behaviour of stainless steel in simulated concrete pore solution[J]. British Corrosion Journal, 1996, 31 (3): 218-222.
[26] Hausmann D A. Steel corrosion in concrete-how does it occur[J]. Materials Protection, 1967, 11(6): 19-26.
[27] Gouda V K. Corrosion and corrosion inhibition of reinforcing steel: I. Immersed in alkaline solutions[J]. British Corrosion Journal, 1970, 5 (5): 198-203.
[28] 陈卿, 宋晓冰, 翟之阳. 混凝土模拟孔隙液中钢筋腐蚀临界氯离子浓度试验研究[J]. 四川建筑科学研究, 2009, 34(6): 156-162. Chen Qing, Song Xiaobing, Zhai Zhiyang. Experimental research on chloride threshold level of steel corrosion in simulated concrete solution[J]. Sichuan Building Science, 2009, 34(6): 156-162.
[29] 洪乃丰. 混凝土中钢筋腐蚀与防护技术(3)——氯盐与钢筋锈蚀破坏[J]. 工业建筑, 1999, 29(10): 60-63. Hong Naifeng. Corrosion and protective technology of rebar in concrete (3): Rebar corrosion by chloric salt[J]. Industrial Construction, 1999, 29(10): 60-63.
[30] Macdonald D D. Passivity-the key to our metals-based Civilization[J]. Pure and Applied Chemistry, 1999, 71(6): 951-978.
[31] Feng X G, Zuo Y, Tang Y M, et al. The influence of strain on the passive behavior of carbon steel in cement extract[J]. Corrosion Science, 2012, 65(4): 542-548.
[32] Feng X G, Zuo Y, Tang Y M, et al. The degradation of passive film on carbon steel in concrete pore solution under compressive and tensile stresses[J]. Electrochimica Acta, 2011, 58(1): 258-263.
[33] Feng X G, Zuo Y, Tang Y M. The influence of stress on passive behavior of steel bars in concrete pore solution[J]. Corrosion Science, 2011, 53(4): 1304-1311.
[34] Díaz B, Freire L, Nóvoa X R, et al. Electrochemical behaviour of high strength steel wires in the presence of chlorides[J]. Electrochimica Acta, 2009, 54(22): 5190-5198.
[35] Yang Q, Luo J L. Effects of hydrogen and tensile stress on the breakdown of passive films on type 304 stainless steel[J]. Electrochimica Acta, 2001, 46(6): 851-859.
[36] Vignal V, Oltra R, Verneau M, et al. Influence of an elastic stress on the conductivity of passive films[J]. Materials Science and Engineering A, 2001, 303(1/2): 173-178.
Outlines

/