[1] Poursaee A, Hansson C M. Reinforcing steel passivation in mortar and pore solution[J]. Cement and Concrete Research, 2007, 37(7): 1127-1133.
[2] AbdEIHaIeem S M, AbdEIAaI E E, AbdEIWanees S, et al. Environmental factors affecting the corrosion behaviour of reinforcing steel I. The early stage of passive film formation in Ca(OH)2 solutions[J]. Corrosion Science, 2010, 52(12): 3875-3882.
[3] AbdEIHaIeem S M, AbdEIWanees S, AbdEIAaI E E, et al. Environmental factors affecting the corrosion behavior of reinforcing steel II. Role of some anions in the initiation and inhibition of pitting corrosion of steel in Ca(OH)2 solutions[J]. Corrosion Science, 2010, 52 (2): 292-302.
[4] AbdEIAaI E E, AbdElWanees S, Diab A, et al. Environmental factors affecting the corrosion behavior of reinforcing steel III. Measurement of pitting corrosion currents of steel in Ca(OH)2 solutions under natural corrosion conditions[J]. Corrosion Science, 2009, 51(8): 1611-1618.
[5] Saremi M, Mahallati E. A study on chloride-induced depassivation of mild steel in simulated concrete pore solution[J]. Cement and Concrete Research, 2002, 32(12): 1915-1921.
[6] Ghods P, Isgor O B, Mcraeb G, et al. The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement[J]. Cement and Concrete Composites, 2009, 31(1): 2-11.
[7] Ye C Q, Hu R G, Dong S G, et al. EIS analysis on chloride-induced corrosion behavior of reinforcement steel in simulated carbonated concrete pore solutions[J]. Journal of Electroanalytical Chemistry, 2013, 688(1): 275-281.
[8] Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy[J]. Corrosion Science, 2010, 52(11): 3646-3653.
[9] Dong Z H, Shi W, Zhang G A, et al. The role of inhibitors on the repassivation of pitting corrosion of carbon steel in synthetic carbonated concrete pore solution[J]. Electrochimica Acta, 2011, 56(17): 5890-5897.
[10] 吴群, 刘玉, 杜荣归, 等. 氯离子对模拟混凝土孔溶液中钢筋钝性影响的电化学研究[J]. 金属学报, 2008, 44(3): 346-350. Wu Qun, Liu Yu, Du Ronggui, et al. Electrochemical study on the effect of chloride ions on the passivity of reinforcing steel in simulated concrete pore solutions[J]. Acta Metallurgica Sinica, 2008, 44(3): 346-350.
[11] Li D G, Feng Y R, Bai Z Q, et al. Influence of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution[J]. Electrochimica Acta, 2007, 52(28): 7877-7884.
[12] Ghods P, Isgor O B, Brown J R, et al. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties[J]. Applied Surface Science, 2011, 257(10): 4669-4677.
[13] Huet B, Hostis V L, Miserque F, et al. Electrochemical behavior of mild steel in concrete: Influence of pH and carbonate content of concrete pore solution[J]. Electrochimica Acta, 2005, 51(1): 172-180.
[14] 陈雯, 杜荣归, 胡融刚, 等. 模拟混凝土孔隙液中钢筋表面膜组成与腐蚀行为的关联[J]. 金属学报, 2011, 47(6): 735-742. Chen Wen, Du Ronggui, Hu Ronggang, et al. Correlation between composition of reinforcing steel surface film and steel corrosion behavior in simulated concrete pore solutions[J]. Acta Metallurgica Sinica, 2011, 47(6): 735-742.
[15] Demoulin A, Trigance C, Neff D, et al. The evolution of the corrosion of iron in hydraulic binders analysed from 46-and 260-year-old buildings[J]. Corrosion Science, 2010, 52(10): 3168-3179.
[16] Chen W, Du R G, Ye C Q, et al. Study on the corrosion behavior of reinforcing steel in simulated concrete pore solutions using in situ Raman spectroscopy assisted by electrochemical techniques[J]. Electrochimica Acta, 2010, 55(20): 5677-5682.
[17] Ghosh R, Singh D D N. Kinetics, mechanism and characterisation of passive film formed on hot dip galvanized coating exposed in simulated concrete pore solution[J]. Surface and Coatings Technology, 2007, 201(16/17): 7346-7359.
[18] Joiret S, Keddam M, Novoa X R, et al. Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH[J]. Cement and Concrete Composites, 2002, 24 (1): 7-15.
[19] 蒲心诚, 靳瑞冬. 灰砂硅酸盐混凝土的碱度与钢筋锈蚀[J]. 硅酸盐建筑制品, 1991(5): 1-5. Pu Xincheng, Jin Ruidong. Relationship between alkalinity of sandlime silicate concrete and the corrosion of rebar[J]. Portland Building Products, 1991(5): 1-5.
[20] 唐方苗, 徐晖, 陈雯, 等. 模拟混凝土孔隙液中钢筋电化学腐蚀行为及pH值的影响作用[J]. 功能材料, 2012, 42(2): 291-293. Tang Fangmiao, Xu Hui, Chen Wen, et al. Effect of pH on the electrochemical corrosion behavior of reinforcing steel in simulated concrete pore solutions[J]. Journal of Functional Materials, 2012, 42 (2): 291-293.
[21] 洪乃丰. 混凝土碱度与钢筋锈蚀[J]. 混凝土与水泥制品, 1990(5): 16-18. Hong Naifeng. Relationship between alkalinity of concrete and the corrosion of rebar[J]. China Concrete and Cement Products, 1990(5): 16-18.
[22] Zhang F, Pan J, Lin C. Localized corrosion behaviour of reinforcement steel in simulated concrete pore solution[J]. Corrosion Science, 2009, 51(9): 2130-2138.
[23] Luo H, Dong C F, Li X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride[J]. Electrochimica Acta, 2012, 64(1): 211-220.
[24] Li L, Sagues A A. Chloride corrosion threshold of reinforcing steel in alkaline solutions: Cyclic polarization behavior[J]. Corrosion Science, 2002, 58(4): 305-316.
[25] Bertolini L, Bolzoni F, Pastore T, et al. Behaviour of stainless steel in simulated concrete pore solution[J]. British Corrosion Journal, 1996, 31 (3): 218-222.
[26] Hausmann D A. Steel corrosion in concrete-how does it occur[J]. Materials Protection, 1967, 11(6): 19-26.
[27] Gouda V K. Corrosion and corrosion inhibition of reinforcing steel: I. Immersed in alkaline solutions[J]. British Corrosion Journal, 1970, 5 (5): 198-203.
[28] 陈卿, 宋晓冰, 翟之阳. 混凝土模拟孔隙液中钢筋腐蚀临界氯离子浓度试验研究[J]. 四川建筑科学研究, 2009, 34(6): 156-162. Chen Qing, Song Xiaobing, Zhai Zhiyang. Experimental research on chloride threshold level of steel corrosion in simulated concrete solution[J]. Sichuan Building Science, 2009, 34(6): 156-162.
[29] 洪乃丰. 混凝土中钢筋腐蚀与防护技术(3)——氯盐与钢筋锈蚀破坏[J]. 工业建筑, 1999, 29(10): 60-63. Hong Naifeng. Corrosion and protective technology of rebar in concrete (3): Rebar corrosion by chloric salt[J]. Industrial Construction, 1999, 29(10): 60-63.
[30] Macdonald D D. Passivity-the key to our metals-based Civilization[J]. Pure and Applied Chemistry, 1999, 71(6): 951-978.
[31] Feng X G, Zuo Y, Tang Y M, et al. The influence of strain on the passive behavior of carbon steel in cement extract[J]. Corrosion Science, 2012, 65(4): 542-548.
[32] Feng X G, Zuo Y, Tang Y M, et al. The degradation of passive film on carbon steel in concrete pore solution under compressive and tensile stresses[J]. Electrochimica Acta, 2011, 58(1): 258-263.
[33] Feng X G, Zuo Y, Tang Y M. The influence of stress on passive behavior of steel bars in concrete pore solution[J]. Corrosion Science, 2011, 53(4): 1304-1311.
[34] Díaz B, Freire L, Nóvoa X R, et al. Electrochemical behaviour of high strength steel wires in the presence of chlorides[J]. Electrochimica Acta, 2009, 54(22): 5190-5198.
[35] Yang Q, Luo J L. Effects of hydrogen and tensile stress on the breakdown of passive films on type 304 stainless steel[J]. Electrochimica Acta, 2001, 46(6): 851-859.
[36] Vignal V, Oltra R, Verneau M, et al. Influence of an elastic stress on the conductivity of passive films[J]. Materials Science and Engineering A, 2001, 303(1/2): 173-178.