Articles

Viscosity Molding of CO2/HCs Fluid Mixtures in Wide Thermodynamic Ranges

  • SONG Bo ,
  • TIAN Yuansi ,
  • WANG Xiaopo ,
  • LIU Zhigang
Expand
  • Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education; Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2014-04-18

  Revised date: 2014-05-23

  Online published: 2014-09-30

Abstract

The CO2/HCs fluids are widely discussed in the engineering and scientific studies. The viscosity, as one of the most important transport properties, plays a key role in the applications of CO2/HCs mixtures in different fields. The theoretical approaches are effective to supplement the experimental viscosity data in wide thermodynamic ranges. In this paper, viscosity models are built for CO2/HCs binary mixtures based on the Vesovic-Wakeham theory. The viscosity correlations and the potential parameters of pure species are selected from literature and utilized in the constructions of models. The viscosities of five industrially important CO2/HCs binary systems are predicted in the temperature range from 273.15 K to 973.15 K and at the pressure up to 200 MPa. The studied systems are CO2/CH4,CO2/C2H6,CO2/C3H8,CO2/n-C4H10 and CO2/iso-C4H10. The calculated values are compared with a large amount of experimental viscosity data over a wide temperature-pressure range. The extensive analysis shows that the calculated viscosity values of the present work could be used with confidence in different industrial applications.

Cite this article

SONG Bo , TIAN Yuansi , WANG Xiaopo , LIU Zhigang . Viscosity Molding of CO2/HCs Fluid Mixtures in Wide Thermodynamic Ranges[J]. Science & Technology Review, 2014 , 32(27) : 19 -22 . DOI: 10.3981/j.issn.1000-7857.2014.27.002

References

[1] 张英芝, 杨正明, 唐立根, 等. 特低渗油藏注CO2驱油微观机制[J]. 科技导报, 2012, 30(35): 29-32. Zhang Yingzhi, Yang Zhengming, Tang Ligen, et al. Microscopic mechanism of CO2 flooding in extra-low permeability reservoir[J]. Science & Technology Review, 2012, 30(35): 29-32.
[2] 王杰, 谭保国, 吕广忠. 一种通过数值模拟手段划分CO2驱替相带的新方法——以高89块油藏为例[J]. 科技导报, 2013, 31(9): 46-49. Wang Jie, Tan Baoguo, Lü Guangzhong. Numerical simulation for division of phase zone displacement: With Gao89 as an example[J]. Science & Technology Review, 2013, 31(9): 46-49.
[3] de la Cruz de Dios J, Bouchot C, Galicia Luna L A. New p-ρ-T measurements up to 70 MPa for the system CO2+propane between 298 and 343 K at near critical compositions[J]. Fluid Phase Equilibria, 2003, 210(2): 175-197.
[4] Tsuji T, Tanaka S, Hiaki T. P-V-T-x relationship for CO2+C4H10 and CO2+iC4H10 binary gas mixtures and the partial molar volume of C4H10 and iC4H10 at 360.00 K[J]. Journal of Supercritical Fluids, 2004, 29(3): 215-220.
[5] Kim J H, Kim M S. Vapor-liquid equilibria for the carbon dioxide+propane system over a temperature range from 253.15 to 323.15 K[J]. Fluid Phase Equilibria, 2005, 238(1): 13-19.
[6] Feng X J, Liu Q, Zhou M X, et al. Gaseous pvTx properties of mixtures of carbon dioxide and propane with the burnett isochoric method[J]. Journal of Chemical and Engineering Data, 2010, 55(9): 3400-3409.
[7] Vesovic V, Wakeham W A. The prediction of the viscosity of dense gas mixtures[J]. International Journal of Thermophysics, 1989, 10(1): 125-132.
[8] Vesovic V. Predicting the viscosity of natural gas[J]. International Journal of Thermophysics, 2001, 22(2): 415-426.
[9] de Wijn A S, Riesco N, Jackson G, et al. Viscosity of liquid mixtures: The Vesovic-Wakeham method[J].Journal of Chemical Physics, 2012, 136(7): 074514.
[10] 宋渤, 王晓坡, 刘志刚. HFC类二元混合制冷剂气相黏度预测[J]. 工程热物理学报, 2012, 33(6): 929-933. Song Bo, Wang Xiaopo, Liu Zhigang. Prediction of gaseous viscosity of binary HFC refrigerant mixtures[J]. Journal of Engineering Thermophysics, 2012, 33(6): 929-933.
[11] Di Pippo R, Dorfman J R, Kestin J, et al. Composition dependence of the viscosity of dense gas mixtures[J]. Physica A, 1977, 86(2): 205-223.
[12] Maitland G C, Rigby M, Smith E B, et al. Intermolecular forces: Their origin and determination[M]. Oxford: Clarendon Press, 1981.
[13] Najafi B, Ghayeb Y, Parsafar G A. New correlation functions for viscosity calculation of gases over wide temperature and pressure ranges[J]. International Journal of Thermophysics, 2000, 21(5): 1011-1031.
[14] Jackson M W. Viscosities of the binary gas mixtures, methane-carbon dioxide and ethylene-argon[J]. Journal of Physical Chemistry, 1956, 60 (6): 789-791.
[15] Kestin J, Ro S T. The viscosity of nine binary and two ternary mixtures of gases at low density[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1974, 78(1): 20-24.
[16] Kestin J, Yata J. Viscosity and diffusion coefficient of six binary mixtures[J]. Journal of Chemical Physics, 1968, 49(11): 4780-4791.
[17] Dewitt K J, Thodos G. Viscosities of binary mixtures in the dense gaseous state: The methane-carbon dioxide system[J]. Canadian Journal of Chemical Engineering, 1966, 44(3): 148-151.
[18] Hendl S, Vogel E. Temperature and initial density dependence of viscosity of binary mixtures: Carbon dioxide - ethane[J]. High Temperature - High pressures, 1993, 25(3): 279-289.
[19] Abe Y, Kestin J, Khalifa H E, et al. The viscosity and diffusion coefficients of the mixtures of light hydrocarbons with other polyatomic gases[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1979, 83(3): 271-276.
[20] Lemmon E W, Huber M L, McLinden M O. NIST standard reference database 23, Reference fluid thermodynamic and transport properties database (REFPROP), version 8.0[C]. Gaithersburg: National Institute of Standards and Technology, 2007.
Outlines

/