Adaptability of the Composite Heat Carrier Huff and Puff in Daqing Sabei Transitional Zone

  • ZHAO Mingguo ,
  • CHA Xingchen ,
  • JIA Huimin ,
  • YANG Hongyu
  • 1. College of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China;
    2. No. 6 Oil Production Plant, Changqing Oilfield Company, PetroChina, Yulin 718600, China

Received date: 2014-05-23

  Revised date: 2014-06-08

  Online published: 2014-09-30


The reservoir development in Daqing Sabei transitional zone is now in the high water cut period, and the production declines rapidly. Under such situations, the composite heat carrier huff and puff in-house experiments are carried out to achieve a better reservoir performance. Through the evaluation of the recovery rate, the water cut and the production gas-oil ratio, the feasibility of the composite heat carrier huff and puff in Sabei transitional zone is explored. It is shown that the composite heat carrier huff and puff enjoys a very good performance, which depends highly on the soak time and the huff and puff cycles. The over-time or too-shorttime well soak will both result in a poor performance. Under the same conditions, the water cut and the production gas-oil ratio decline with the increase of the soak time. When the soak time goes over 150 s, the water cut and the production gas-oil ratio will increase. With the increase of the huff and puff cycle, the oil recovery, the water cut and the gas-oil ratio increase. The optimal soak time for the Daqing Sabei transitional zone reservoir is 150 s, with the highest recovery and the lowest production gas-oil ratio and the huff and puff cycles should be three or four periods and three cycles for the best result.

Cite this article

ZHAO Mingguo , CHA Xingchen , JIA Huimin , YANG Hongyu . Adaptability of the Composite Heat Carrier Huff and Puff in Daqing Sabei Transitional Zone[J]. Science & Technology Review, 2014 , 32(27) : 66 -69 . DOI: 10.3981/j.issn.1000-7857.2014.27.011


[1] 翁小红, 马哲斌, 肖见, 等. HYS油田复合热载体驱油先导试验[J]. 石油钻探技术, 2012,40(4): 111-114. Weng Xiaohong, Ma Zhebin, Xiao Jian, et al. Pilot test for oil displacement with combined heat carrier in HYS oilfield[J]. Petroleum Drilling Techniques, 2012, 40(4): 111-114.
[2] 姜瑞忠, 杨仁锋, 段志刚, 等. 复合热载体泡沫驱提高采收率研究[J]. 应用基础与工程科学学报, 2011, 19(4): 565-573. Jiang Ruizhong, Yang Renfeng, Duan Zhigang, et al. Combined thermal carrier foam flooding to enhance the oil recovery[J]. Journal of Basic Science and Engineering, 2011, 19(4): 565-573.
[3] 姜杰, 李敬松, 祁成祥, 等. 海上稠油多元热流体吞吐开采技术研究[J]. 油气藏评价与开发, 2012, 2(4): 38-40. Jiang Jie, Li Jingsong, Qi Chengxiang, et al. Study on complex thermal fluids huff and puff technology in offshore heavy oil reservoir[J]. Reservoir Evaluation and Development, 2012, 2(4): 38-40.
[4] 张伟, 孙永涛, 林涛, 等. 海上稠油多元热流体吞吐增产机理室内实验研究[J]. 石油化工应用, 2013, 32(1): 34-36. Zhang Wei, Sun Yongtao, Lin Tao, et al. Experimental study on mechanisms of the multi-fluid thermal recovery on offshore heavy oil[J]. Petrochemical Industry Application, 2013, 32(1): 34-36.
[5] 彭元怀. 复合热载体泡沫驱数值模拟研究[D]. 东营: 中国石油大学, 2011. Peng Yuanhuai. Study on numerical simulation about combined thermal carrier and foam flooding [D]. Dongying: China University of Petroleum, 2011.
[6] 段志刚. 复合热载体泡沫驱室内实验及矿场数值模拟研究[D]. 北京: 中国石油大学, 2006. Duan Zhigang. Laboratory experiments and numerical simulation of composite heat carrier foam mine flooding[D]. Beijing: China University of Petroleum, 2006.
[7] 付美龙, 熊帆, 张凤山, 等. 二氧化碳和氮气及烟道气吞吐采油物理模拟实验——以辽河油田曙一区杜84块为例[J]. 油气地质与采收率, 2010, 17(1): 68-70. Fu Meilong, Xiong Fan, Zhang Fengshan, et al. Physical analogue experiment of CO2, N2 and flue gas stimulation for oil production in Du84 block, Shuyi District, Liaohe Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2010, 17(1): 68-70.
[8] 丁祖鹏. 罗艳艳. 均质油藏两相渗流三维定量物理模拟相似准则[J]. 油气井测试, 2014, 23(1): 1-5. Ding Zupeng, Luo Yanyan. Similarity criteria of quantitative 3D physical simulation about two phase flow in heterogeneous reservoir[J]. Well Testing, 2014, 23(1): 1-5.
[9] 滕起, 杨正明, 刘学伟, 等. 特低渗透油藏水驱油物理模拟相似准则的推导和应用[J]. 科技导报, 2013, 31(9): 40-45. Teng Qi, Yang Zhengming, Liu Xuewei, et al. Similar criteria derivation for the physicalsimulation of water flooding in the plate model of ultralow permeability reservoir and its applications[J]. Science & Technology Review, 2013, 31(9): 40-45.
[10] 江夏. 盐间泥质白云岩油藏注氮气提高采收率技术[J]. 石油天然气学报, 2010, 32 (4): 294-297. Jiang Xia. Argillaceous dolomite reservoir between salt nitrogen injection EOR technology[J]. Journal of Oil and Gas Technology, 2010, 32(4): 294-297.
[11] 陈民锋, 郎兆新, 莫小国. 超稠油油藏蒸汽吞吐参数优选及合理开发界限的确定[J]. 石油大学学报, 2002, 26(1): 39-43. Chen Minfeng, Lang Zhaoxin, Mo Xiaoguo. Optimization of steam soaking parameters and determination of feasible devel oping limit for heavy oil resvoir[J]. Journal of the University of Petroleum, China, 2002, 26(1): 39-43.
[12] 赵明国, 王东. 大庆油区芳48断块CO2吞吐室内实验[J]. 油气地质与采收率, 2008, 15(2): 89-91. Zhao Mingguo, Wang Dong. Laboratory experiment of CO2 stimulation in Fang48 fault block in Daqing Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2008, 15(2): 89-91.
[13] 王海妹, 张金功, 于晓飞, 等. 油气田开发过程中油气水的运移特征研究[J]. 内蒙古石油化工, 2009(10): 166-168. Wang Haimei, ZhangJingong, Yu Xiaofei, et al. Researchoil and gas fielddevelopment processmigration characteristics of waterin theoil and gas[J]. Petrochemical Inner Mongolia, 2009(10): 166-168.
[14] Scheidegger A E. 多孔介质中的渗流物理[M]. 王鸿勋, 译. 北京: 石油工业出版社, 1982. Scheidegger A E. Porous media flow physics[M]. Wang Hongxun, trans. Beijing: Petroleum Industry Press, 1982.