Reviews

Research Progress on the Impact of Abiotic Stresses on Plant Regeneration During Tissue Culture in vitro

  • SHE Maoyun ,
  • YIN Guixiang ,
  • DU Lipu ,
  • ZHANG Pingzhi ,
  • YE Xingguo
Expand
  • 1. Crop Institute, Anhui Academy of Agricultural Sciences, Hefei 230031;
    2. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences; National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China

Received date: 2014-06-27

  Revised date: 2014-07-15

  Online published: 2014-10-24

Abstract

Plant regeneration performance during tissue culture in vitro is affected by many factors. To improve plant regeneration efficiency, the previous strategies focused on genotype screening, optimization on media components, and combination of plant growth regulators, while paying little attention to the significant impact of environmental stress on plant regeneration. This paper summarizes the recent research progress on different stress-induced effects on plant regeneration during tissue culture in vitro, including oxidative stress, osmotic stress, wounding, and cold stress. The oxidative stress plays a dual role in the plant regeneration process, i.e., induction of relevant stress antioxidant enzymes synthesis contributing to plant regeneration positively and changes on cell membrane permeability caused by oxidative stress leading to cell death negatively. The short-term osmotic stress significantly promotes the plant regeneration potential. Wounding has a positive effect on somatic embryogenesis by activating the relevant gene expression. The effect of temperature on the development of plant embryonic cells depends on the plant developmental stage and treatment intensity, and moderate temperature pretreatment can induce more embryonic calli. Therefore, appropriate stress pretreatment on explants used for tissue culture may contribute to the formation of embryogenic calli greatly, and may ultimately help to improve plant regeneration capacity during tissue culture in vitro.

Cite this article

SHE Maoyun , YIN Guixiang , DU Lipu , ZHANG Pingzhi , YE Xingguo . Research Progress on the Impact of Abiotic Stresses on Plant Regeneration During Tissue Culture in vitro[J]. Science & Technology Review, 2014 , 32(28/29) : 97 -103 . DOI: 10.3981/j.issn.1000-7857.2014.28/29.014

References

[1] Karami O, Saidi A. The molecular basis for stress-induced acquisitionof somatic embryogenesis[J]. Molecular Biology Reports, 2010, 37(5):2493-2507.
[2] Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidativedamage and oxygen deprivation stress: A review[J]. Annals of Botany,2003, 91(2): 179-194.
[3] Obert B, Benson E E, Millam S, et al. Moderation of morphogenetic andoxidative stress responses in flax in vitro cultures by hydroxynonenaland desferrioxamine[J]. Journal of Plant Physiology, 2005, 162(5): 537-547.
[4] Papadakis A K, Siminis C I, Roubelakis-Angelakis K A. Reduced activityof antioxidant machinery is correlated with suppression of totipotency inplant protoplasts[J]. Plant Physiology, 2001, 126(1): 434-444.
[5] Szechyńska-Hebda M, Skrzypek E, Dąbrowska G, et al. The role ofoxidative stress induced by growth regulators in the regenerationprocess of wheat[J]. Acta Physiologiae Plantarum, 2007, 29(4): 327-337.
[6] Gallie D R. The role of L-ascorbic acid recycling in responding toenvironmental stress and in promoting plant growth[J]. Journal ofExperimental Botany, 2013, 64(2): 433-443.
[7] Zavattieri M A, Frederico A M, Lima M, et al. Induction of somaticembryogenesis as an example of stress-related plant reactions[J].Electronic Journal of Biotechnology, 2010, 13(1): 12-13.
[8] Tuteja N, Gill S, Tuteja R. Plant responses to abiotic stresses: Sheddinglight on salt, drought, cold, and heavy metal stress[J]. Omics and PlantStress Tolerance, Benjam Science Publisher, USA, 2011: 39-64.
[9] Ikeda-Iwai M, Umehara M, Satoh S, et al. Stress-induced somaticembryogenesis in vegetative tissues of Arabidopsis thaliana[J]. ThePlant Journal, 2003, 34(1): 107-114.
[10] Kikuchi A, Sanuki N, Higashi K, et al. Abscisic acid and stresstreatment are essential for the acquisition of embryogenic competenceby carrot somatic cells[J]. Planta, 2006, 223(4): 637-645.
[11] KiyosueT,TakanoK,KamadaH,etal.Inductionofsomatic embryogenesisin carrot by heavy metal ions[J]. Canadian Journal of Botany, 1990, 68(10): 2301-2303.
[12] Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures[J]. Physiologia Plantarum, 1962, 15(3): 473-497.
[13] Santarem E R, Pelissier B, Finer J J. Effect of explant orientation, pH,solidifying agent and wounding on initiation of soybean somaticembryos[J]. In Vitro Cellular & Developmental Biology-Plant, 1997, 33(1): 13-19.
[14] Suzuki N, Koussevitzky S, Mittler R O N, et al. ROS and redox signallingin the response of plants to abiotic stress[J]. Plant, Cell & Environment,2012, 35(2): 259-270.
[15] Brotman Y, Landau U, Cuadros-Inostroza Á, et al. Trichoderma-plantroot colonization: Escaping early plant defense responses andactivation of the antioxidant machinery for saline stress tolerance[J].PLoS Pathogens, 2013, 9(3): e1003221.
[16] Rai M K, Shekhawat N S, Gupta A K, et al. The role of abscisic acidin plant tissue culture: A review of recent progress[J]. Plant Cell,Tissue & Organ Culture, 2011, 106(2): 179-190.
[17] Abdel Latef A A . Changes of antioxidative enzymes in salinity toleranceamong different wheat cultivars[J]. Cereal Research Communications,2010, 38(1): 43-55.
[18] Melchiorre M, Robert G, Trippi V, et al. Superoxide dismutase andglutathione reductase overexpression in wheat protoplast: Photooxidativestress tolerance and changes in cellular redox state[J]. Plant Growthand Regulation, 2009, 57(1): 57-68.
[19] Selote D S, Khanna-Chopra R. Antioxidant response of wheat roots todrought acclimation[J]. Protoplasma, 2010, 245(1-4): 153-163.
[20] Zhang S G, Han S Y, Yang W H, et al. Changes in H2O2 content andantioxidant enzyme gene expression during the somatic embryogenesisof Larix leptolepis[J]. Plant Cell, Tissue & Organ Culture, 2010, 100(1): 21-29.
[21] Cutler A J, Saleem M, Wang H. Cereal protoplast recalcitrance[J]. InVitro Cellular & Developmental Biology-Plant, 1991, 27(3): 104-111.
[22] Iiyama K, Lam T B T, Stone B A. Covalent cross-links in the cell wall[J]. Plant Physiol, 1994, 104(2): 315-320.
[23] Lamb C, Dixon R A. The oxidative burst in plant disease resistance[J].Annual Review of Plant Physiology and Plant Molecular Biology,1997, 48(1): 251-275.
[24] Belmonte M F, Stasolla C. Applications of DL-buthionine-[S, R]-sulfoximine deplete cellular glutathione and improves white spruce(Picea glauca) somatic embryo development[J]. Plant Cell Reports,2007, 26(4): 517-523.
[25] Smagghe B J, Blervacq A S, Blassiau C, et al. Immunolocalization ofnon-symbiotic hemoglobins during somatic embryogenesis in chicory[J]. Plant Signaling and Behavior, 2007, 2(1): 43-49.
[26] Stasolla C, Belmonte M F, Tahir M, et al. Buthionine sulfoximine(BSO)-mediated improvement in cultured embryo quality in vitroentails changes in ascorbate metabolism, meristem development andembryo maturation[J]. Planta, 2008, 228(2): 255-272.
[27] Legrand S, Hendriks T, Hilbert J L, et al. Characterization of expressedsequence tags obtained by SSH during somatic embryogenesis inCichorium intybus L[J]. BMC Plant Biology 2007, 7(1): 27-38
[28] Gupta S D, Datta S. Antioxidant enzyme activities during in vitromorphogenesis of gladiolus and the effect of application of antioxidanton plant regeneration[J]. Biologia Plantarum, 2003, 47(2): 179-183.
[29] Libik M, Konieczny R, Pater B, et al. Differences in the activities ofsome antioxidant enzymes and in H2O2 content during rhizogenesisand somatic embryogenesis in callus cultures of the ice plant[J]. PlantCell Reports, 2005, 23(12): 834-841.
[30] Cui K R, Xing G S, Liu X M, et al. Effect of hydrogen peroxide onsomatic embryogenesis of Lycium barbarum L[J]. Plant Science, 1999,146(1): 9-16.
[31] Rajeswari V, Paliwal K. Peroxidase and catalase changes during in vitro adventitious shoot organogenesis from hypocotyls of Albiziaodoratissima L.f. (Benth) [J]. Acta Physiologiae Plantarum, 2008, 30(6): 825-832.
[32] Tian M, Gu Q, Zhu M Y. The involvement of hydrogen peroxide andantioxidant enzymes in the process of shoot organogenesis ofstrawberry callus[J]. Plant Science, 2003, 165(4): 701-707.
[33] Møller I M, Sweetlove L J. ROS signaling: Specificity is required[J].Trends in Plant Science, 2010, 15(7): 370-374.
[34] Huang W L, Lee C H, Chen Y R. Levels of endogenous abscisic acidand indole-3-acetic acid influence shoot organogenesis in calluscultures of rice subjected to osmotic stress[J]. Plant Cell, Tissue &Organ Culture, 2012, 108(2): 257-263.
[35] Jain R K, Jain S, Wu R. Stimulatory effect of water stress on plantregeneration in aromatic Indica rice varieties[J]. Plant Cell Reports,1996, 15(6): 449-454.
[36] Karami O, Deljou A, Esna-Ashari M, et al. Effect of sucroseconcentrations on somatic embryogenesis in carnation (Dianthuscaryophyllus L.)[J]. Scientia Horticulturae, 2006, 110(4): 340-344.
[37] Karami O, Deljou A, Kordestani G K. Secondary somatic embryogenesisof carnation (Dianthus caryophyllus) [J]. Plant Cell, Tissue & OrganCulture, 2008, 92(3): 273-280.
[38] You X L, Yi J S, Choi Y E. Cellular change and callose accumulationin zygotic embryos ofE leutherococcus senticosus caused by plasmolyzingpretreatment result in high frequency of single-cell-derived somaticembryogenesis[J]. Protoplasma, 2006, 227(2-4): 105-112.
[39] Lu C Y, Vasil V, Vasil I K. Improved efficiency of somatic embryogenesisand plant regeneration in tissue cultures of maize (Zea mays L.) [J].Theoretical and Applied Genetics, 1983, 66(3-4): 285-289.
[40] Wetherell D F. Enhanced adventive embryogenesis resulting fromplasmolysis of cultured wild carrot cells[J]. Plant Cell, Tissue &Organ Culture, 1984, 3(3): 221-227.
[41] Marty I, Brugidou C, Chartier Y, et al. Growth-related gene expressionin Nicotiana tabacum mesophyll protoplasts[J]. The Plant Journal,1993, 4(2): 265-278.
[42] Hammatt N, Davey M R. Somatic Embryogenesis and Plant Regenerationfrom Cultured Zygotic Embryos of Soybean[J]. Journal of PlantPhysiology, 1987, 128(3): 219-226.
[43] Rancé I, Tian W, Mathews H, et al. Partial desiccation of matureembryo-derived calli, a simple treatment that dramatically enhancesthe regeneration ability of Indica rice[J]. Plant Cell Reports, 1994, 13(11): 647-651.
[44] Tsukahara M, Hirosawa T. Simple dehydration treatment promotesplantlet regeneration of rice (Oryza sativa L.) callus[J]. Plant CellReports, 1992, 11(11): 550-553.
[45] Brown C, Brooks F J, Pearson D, et al. Control of embryogenesis andorganogenesis in immature wheat embryo callus using increasedmedium osmolarity and abscisic acid[J]. Journal of Plant Physiology,1989, 133(6): 727-733.
[46] Kavi Kishor P B, Reddy G M. Retention and revival of regeneratingability by osmotic adjustment in long-term cultures of four varieties ofrice[J]. Journal of Plant Physiology, 1986, 126(1): 49-54.
[47] Ryschka S, Ryschka U, Schulze J. Anatomical studies on the developmentof somatic embryoids in wheat and barley explants[J]. Biochemie undPhysiologie der Pflanzen, 1991, 187(1): 31-41.
[48] Kumria R, Sunnichan V G, Das D K, et al. High-frequency somaticembryo production and maturation into normal plants in cotton(Gossypium hirsutum) trough metabolic stress[J]. Plant Cell Reports,2003, 21(7): 635-639.
[49] Grosset J, Marty I, Chartier Y, et al. mRNAs newly synthesized bytobacco mesophyll protoplasts are wound-inducible[J]. PlantMolecular Biology, 1990, 15(3): 485-496.
[50] Bommineni V R, Jauhar P P. Regeneration of plantlets through isolatedscutellum culture of durum wheat[J]. Plant Science, 1996, 116(2):197-203.
[51] Fellers J P, Guenzi A C, Taliaferro C M. Factors affecting theestablishment and maintenance of embryogenic callus and suspensioncultures of wheat (Triticum aestivum L.)[J]. Plant Cell Reports, 1995,15(3/4): 232-237.
[52] Rodrignez-Sotres R, Black M. Osmotic potential and abscisic acidregulate triacylglycerol synthesis in developing wheat embryos[J].Planta, 1993, 192(1): 9-15.
[53] Cheong Y H, Chang H S, Gupta R, et al. Transcriptional profilingreveals novel interactions between wounding, pathogen, abiotic stress,and hormonal responses in Arabidopsis[J]. Plant Physiology, 2002, 129(2): 661-677.
[54] Nadolska-Orczyk A, Orczyk W. New aspects of soybean somaticembryogenesis[J]. Euphytica, 1994, 80(1/2): 137-143.
[55] Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation inhigher plants[J]. Annual Review of Plant Physiology, 1984, 35(1): 155-189.
[56] Jamet E, Durr A, Parmentier Y, et al. Is ubiquitin involved in thededifferentiation of higher plant cells?[J]. Cell Differentiation andDevelopment, 1990, 29(1): 37-46.
[57] Criqui M C, Jamet E, Parmentier Y, et al. Isolation and characterizationof a plant cDNA showing homologies to animal glutathione peroxidases[J]. Plant Molecular Biology, 1992, 18(3): 623-627.
[58] Iwase A, Mitsuda N, Koyama T, et al. The AP2/ERF transcriptionfactor WIND1 controls cell dedifferentiation in Arabidopsis[J]. CurrentBiology, 2011, 21(6): 508-514.
[59] Kamada H, Tachikawa Y, Saitou T, et al. Heat stress induction ofcarrot somatic embryogenesis[J]. Plant Tissue Culture Letters, 1994, 11(3): 229-232.
[60] Pechan P M, Keller W A. Identification of potentially embryogenicmicrospores in Brassica napus [J]. Physiologia Plantarum, 1988, 74(2):377-384.
[61] Györgyey J, Gartner A, Németh K, et al. Alfalfa heat shock genes aredifferentially expressed during somatic embryogenesis[J]. PlantMolecular Biology, 1991, 16(6): 999-1007.
[62] Howarth C. Heat shock proteins in S orghum bicolor and Pennisetumamericanum II. Stored RNA in sorghum seed and its relationship toHSP synthesis during germination[J]. Plant, Cell & Environment,1990, 13(1): 57-64.
[63] Zimmermann J L, Apuya N, Darwish K, et al. Novel regulation of heatshock genes during carrot somatic embryo development[J]. The PlantCell, 1989, 1(12): 1137-1146.
[64] Ellis R J. Molecular chaperones: The plant connection[J]. Science,1990, 250(4983): 954-959.
[65] Kvaalen H, Johnsen Ø. Timing of bud set in Picea abies is regulatedby a memory of temperature during zygotic and somatic embryogenesis[J]. New Phytologist, 2008, 177(1): 49-59.
[66] Asaka I, Li I, Yoshikawa T, et al. Embryoid formation by hightemperature treatment from multiple shoots of Panax ginseng[J].Planta Medica, 1993, 59(4): 345-346.
[67] Ilahi I, Ghauri E G. Regeneration in cultures of Papaver bracteatumas influenced by growth hormones and temperature[J]. Plant Cell,Tissue & Organ Culture, 1994, 38(1): 81-83.
[68] Yin G X, Wang Y L, She M Y, et al. Establishment of a highly efficientregeneration system for the mature embryo culture of wheat[J].Agricultural Sciences in China, 2011, 10(1): 9-17.
Outlines

/