Experimental Study of Coal Surface Adsorption Uniformity in Low Temperature Environment

  • YUE Gaowei ,
  • WANG Zhaofeng ,
  • XIE Ce
Expand
  • 1. School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
    2. School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China

Received date: 2014-05-27

  Revised date: 2014-06-25

  Online published: 2014-11-15

Abstract

The isosteric adsorption heat is an important parameter to measure the solid surface inhomogeneity during its adsorption. In this paper a high/low temperature adsorption experiment device is utilized to test the gas adsorption of anthracite coal of Jiulishan coal mine, lean coal of Xinyuan coal mine and gas-fat coal of Panbei coal mine at different temperatures ranging from 30 to -30℃. Then according to the relationship of isosteric adsorption heat and adsorption capacity, the influence of coal surface inhomogeneity is discussed at ordinary temperatures (30, 20℃) and low temperatures (-10, -20, -30℃). The analytical results show that the gas adsorption capacities of different coal ranks all increase with the decrease of environmental temperature. In an ordinary temperature environment (30, 20℃ ) the isosteric adsorption heat of coal decreases as the gas adsorption capacity increases, which indicates that the coal surface energy of adsorption is heterogeneous. But when cooling to -10, -20, or -30℃, the isosteric adsorption heat is almost irrelevant to the adsorption capacity of coal, which indicates that the coal surface energy of adsorption is uniform. So the Langmuir equation of the coal gas adsorption theory is more suitable to a low temperature environment (below 0℃).

Cite this article

YUE Gaowei , WANG Zhaofeng , XIE Ce . Experimental Study of Coal Surface Adsorption Uniformity in Low Temperature Environment[J]. Science & Technology Review, 2014 , 32(31) : 71 -74 . DOI: 10.3981/j.issn.1000-7857.2014.31.010

References

[1] 聂百胜, 何学秋, 王恩元. 煤的表面自由能及应用探讨[J]. 太原理工大 学学报, 2000, 31(4): 346-348. Nie Baisheng, He Xueqiu, Wang Enyuan. Surface free energy of coal and its calculation[J]. Journal of Taiyuan University of Technology, 2000, 31(4): 346-348.
[2] 陈昌国, 魏锡文, 鲜学福. 用从头计算研究煤表面与甲烷分子的作用[J]. 重庆大学学报: 自然科学版, 2000, 23(3): 77-79. Chen Changguo, Wei Xiwen, Xian Xuefu. AB intio study on the interaction between CH4 and the coal surface[J]. Journal of Chongqing University: Natural Science Edition, 2000, 23(3): 77-79.
[3] 蔺亚兵, 马东民, 刘钰辉, 等. 温度对煤吸附甲烷的影响实验[J]. 煤田 地质与勘探, 2012, 40(6): 24-28. Lin Yabing, Ma Dongmin, Liu Yuhui, et al. Experiment of the influence of temperature on coalbed methane adsorption[J]. Coal Geology & Exploration, 2012, 40(6): 24-28.
[4] 张小东, 张子戌. 煤吸附瓦斯机理研究的新进展[J]. 中国矿业, 2008, 17(6): 70-72. Zhang Xiaodong, Zhang Zixu. Recent research progress of the gasadsorption mechanism in coal[J]. China Mining Magazing, 2008, 17(6): 70-72.
[5] Karacan C O, Okandan E. Assessment of energetic heterogeneity of coals for gas adsorption and its effect on mixture predictions for coalbed methane studies[J]. Fuel, 2000, 79(15): 1963-1974.
[6] 聂百胜, 段三明. 煤吸附瓦斯的本质[J]. 太原理工大学学报, 1998, 29 (4): 417-420. Nie Baisheng, Duan Sanming. The adsorption essence of gas on coal surface[J]. Journal of Taiyuan University of Technology, 1998, 29(4): 417-420.
[7] 陈昌国, 辜敏, 鲜学福. 煤的原子分子结构及吸附甲烷机理研究进展[J]. 煤炭转化, 2003, 26(4): 5-9. Chen Changguo, Gu Min, Xian Xuefu. Study on structure of coal and adsorption mechanism of methane on it[J]. Coal Conversion, 2003, 26 (4): 5-9.
[8] 桑树勋, 朱炎铭, 张井, 等. 煤吸附气体的固气作用机理(II)——煤吸 附气体的物理过程与理论模型[J]. 天然气工业, 2005(1): 16-18. Sang Shuxun, Zhu Yanming, Zhang Jing, et al. Solid-gas interaction mechanism of coal-adsorbed gas (II)—Physical process and theoretical model of coal-adsorbed gas[J]. Natural Gas Industry, 2005(1): 16-18.
[9] 张小东, 刘浩, 刘炎昊, 等. 煤体结构差异的吸附响应及其控制机理[J]. 地球科学, 2009, 34(5): 848-854. Zhang Xiaodong, Liu Hao, Liu Yanhao, et al. Adsorption respondence of different coal body structures and its influence mechanism[J]. Earth Science, 2009, 34(5): 848-854.
[10] 周来, 冯启言, 秦勇. CO2和CH4在煤基质表面竞争吸附的热力学分 析[J]. 煤炭学报, 2011, 36(8): 1307-1311. Zhou Lai, Feng Qiyan, Qin Yong. Thermodynamic analysis of competitive adsorption of CO2 and CH4 on coal matrix[J]. Journal of China Coal Society, 2011, 36(8): 1307-1311.
[11] 张世杰, 李成武, 丁翠, 等. 煤表面分子片段模型与瓦斯吸附分子力 学模拟[J]. 矿业研究与开发, 2010, 30(1): 88-91. Zhang Shijie, Li Chengwu, Ding Cui, et al. Surface molecular segment model of coal and molecular mechanics simulation of gas absorption[J]. Mining Research and Development, 2010, 30(1): 88-91.
[12] 何文光. 不均匀表面的吸附平衡与吸附动力学[J]. 新乡师范学院学 报: 自然科学版, 1962(2): 64-74. He Wenguang. Adsorption equilibrium and dynamic of non- uniform surface[J]. Journal of Henan Normal University: Natural Science Edition, 1962(2): 64-74.
[13] Ramirez-Pastor A J, Bulnes F. Differential heat of adsorption in the presence of an order- disorder phase transition[J]. Physica A, 2000, 283(1/2): 198-203.
[14] Zhou L, Zhou Y P. Determination of compressibility factor and fugacity coefficient of hydrogen in studies of adsorptive storage[J]. International Journal of Hydrogen Energy, 2001, 26: 597-601.
[15] 解晨, 郑青榕. 甲烷在活性炭上的超临界温度吸附实验及理论分析[J]. 天然气化工, 2012, 37(1): 40-44. Xie Chen, Zheng Qingrong. Experiment and theoretical analysis of methane adsorption on activated carbon under supercritical temperature[J]. Natural Gas Chemical Industry, 2012, 37(1): 40-44.
Outlines

/