Quantitative Characterization of Shale Reservoir of Upper Paleozoic Shale in the Eastern Margin of Ordos Basin

  • ZHAO Keying ,
  • GUO Shaobin ,
  • LIU Xinshe ,
  • ZHAO Huitao ,
  • HOU Yundong ,
  • WANG Huaichang
Expand
  • 1. School of Energy Resources, China University of Geosciences, Beijing 100083, China;
    2. Changqing Oilfield Company, PetroChina Company Limited, Xi'an 710018, China

Received date: 2014-08-03

  Revised date: 2014-09-01

  Online published: 2014-11-27

Abstract

Shale gas exists in forms of free state and adsorption state in shale. Micro pore and micro fracture in shale are the main locations of the reservoir space and the drainage channels of the shale gas and the gas content is related to the pore fracture growth degree. So it is very important to study the micro pore and the micro fracture in the shale reservoir. In this paper, based on the results of the field emission scanning electron microscopy, the argon ion polishing and the nuclear magnetic resonance, the micro pore and micro crack morphologies in the Upper Paleozoic in the eastern margin of Ordos Basin are analyzed. The pore size and the development degree of the micro-scale pore, the nano-scale pore and the fracture are quantitatively analyzed. The comprehensive analysis shows that the main reservoir space of shale is the micropore and the microcrack with organic pore as revealed mainly by the argon ion polishing and the clay mineral micro pore as revealed mainly by the scanning electron microscope. The micron pore size is in the range of 1.32~5.58 μm and its average area percent of pore is in the range of 19.48%~23.66%. The average size of the organic micro pore is in the range of 56.51~80.75 nm and its average area percent of pore is in the range of 7.45%~9.66%. The percent of crack is in the range of 0.69%~5.13%. Effective porosity is in the range of 0.25%~1.33%, which accounts for 16%~46% of total porosity. Comprehensive analysis reveals that the shale reservoir of Shanxi of Taitou is the best, because of the relatively low buried depth, the full development of micro-scale pore, the relatively high percentage of crack/micro crack of 56.51~80.75 nm and its average area percent in the range of 7.45% ~9.66%. The proportions of the crack and the movable fluid are 2.18% , 10.82% , respectively, and the mean value of effective porosity is 0.76% amounting to 16%~41% of the total pore. The quantitative study of micro pore and micro crack provides a reliable basis for the further study of shale gas of Upper Paleozoic in this region.

Cite this article

ZHAO Keying , GUO Shaobin , LIU Xinshe , ZHAO Huitao , HOU Yundong , WANG Huaichang . Quantitative Characterization of Shale Reservoir of Upper Paleozoic Shale in the Eastern Margin of Ordos Basin[J]. Science & Technology Review, 2014 , 32(32) : 60 -66 . DOI: 10.3981/j.issn.1000-7857.2014.32.010

References

[1] 焦淑静, 韩辉, 翁庆萍, 等. 页岩孔隙结构扫描电镜分析方法研究[J]. 电子显微学报, 2012, 31(5): 432-436. Jiao Shujing, Han Hui, Weng Qingping, et al. Scanning electron microscope analysis of porosity in shale[J]. Journal of Chinese Electron Microscopy Society, 2012, 31(5): 432-436.
[2] Curtis J B. Fractured shale gas systems[J]. AAPG Bulletin, 2002, 11 (86): 1921-1938.
[3] Ross D J K. Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada[J]. Bulletin of Canadian Petroleum Geology, 2007, 55(1): 51-75.
[4] 蒲泊伶, 蒋有录, 王毅, 等. 四川盆地下志留统龙马溪组页岩气成藏条 件及有利地区分析[J]. 石油学报, 2010, 31(2): 225-230. Pu Boling, Jiang Youlu, Wang Yi, et al. Reservoir-forming conditions and favorable exploration zones of shale gas in Lower Silurian Longmaxi formation of Sichuan Basin[J]. Acta Petrolei Sinica, 2010, 31 (2): 225-230.
[5] 吉利明, 邱军利, 夏燕青, 等. 常见粘土矿物电镜扫描微孔隙特征与甲 烷吸附性[J]. 石油学报, 2012, 33(2): 249-256. Ji Liming, Qiu Junli, Xia Yanqing, et al. Micro- pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Petrolei Sinica, 2010, 31(2): 225-230.
[6] 张金川, 徐波, 聂海宽, 等. 中国页岩气资源勘探潜力[J]. 天然气工 业, 2008, 28(6): 136-140. Zhang Jinchuan, Xu Bo, Nie Haikuan, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008, 28(6): 136- 140.
[7] 应凤祥, 杨式升, 张敏, 等. 激光扫描共聚焦显微镜研究储层孔隙结构[J]. 沉积学报, 2002, 20(1): 75-79. Ying Fengxiang, Yang Shisheng, Zhang Min, et al. Application of laser scanning confocal microscope to the measurement of pore texture in reservoirs[J]. Acta Sedimen Tologica Sinica, 2002, 20(1): 75-79.
[8] 邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学 价值[J]. 岩石学报, 2011, 27(6): 1857-1864. Zou Caineng, Zhu Rukai, Bai Bin, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864.
[9] 陈杰, 周改英, 赵喜亮, 等. 储层岩石孔隙结构特征研究方法综述[J]. 特种油气藏, 2005, 12(4): 11-14. Chen Jie, Zhou Gaiying, Zhao Xiliang, et al. Overview of study methods of reservoir rock pore structure[J]. Special Oil and Gas Reservoirs, 2005, 12(4): 11-14.
[10] 王为民, 叶朝辉, 郭和坤. 陆相储层岩石核磁共振物理特征的实验研 究[J]. 波谱学杂志, 2001, 18(2): 113-121. Wang Weiming, Ye Chaohui, Guo Hekun. Experimental studies of NMR properties of continental sedimentary rocks[J]. Chinese Journal of Magnetic Resonance, 2001, 18(2): 113-121.
[11] 肖立志. 核磁共振成像测井与岩石核磁共振及其应用[M]. 北京: 科 学出版社, 1998. Xiao Lizhi. Nuclear magnetic resonance imaging logging and rockmagnetic resonance and its application[M]. Beijing: Science Press, 1998
[12] 孙军昌, 陈静平, 杨正明, 等. 页岩储层岩芯核磁共振响应特征实验 研究[J]. 科技导报, 2012, 30(14): 25-30. Sun Junchang, Chen Jingping, Yang Zhengming, et al. Experimental study of the NMR characteristics of shale reservoir rock[J]. Science & Technology Review, 2012, 30(14): 25-30.
[13] 杨峰, 宁正福, 胡昌蓬, 等. 页岩储层微观孔隙结构特征[J]. 石油学 报, 2013, 34(2): 301-303. Yang Feng, Ning Zhengfu, Hu Changpeng, et al. Characterization of microscopic pore structures in shale reservoirs[J]. Acta Petrolei Sinica, 2013, 34(2): 301-303.
[14] 钟太贤, 王红岩, 刘洪林. 中国南方海相页岩孔隙结构特征[J]. 天然 气工业, 2012, 32(9): 1-4. Zhong Taixian, Wang Hongyan, Liu Honglin. Characteristics of pore structure of marine shales in south China[J]. Natural Gas Industry, 2012, 32(9): 1-4.
[15] 胡容泽. 粉末颗粒和孔隙的测量[M]. 北京: 冶金工业出版社, 1982. Hu Rongze. Measurement of powder particles and pores[M]. Beijing: Metallurgical Industry Press, 1982.
[16] 崔景伟, 邹才能, 朱如凯, 等. 页岩孔隙研究新进展[J]. 地球科学进 展, 2012, 27(12): 1319-1322. Cui Jingwei, Zou Caineng, Zhu Rukai, et al. New advances in shale porosity research[J]. Advances in Earth Science, 2012, 27(12): 1319- 1322.
[17] 李武广, 杨胜来, 徐晶, 等. 考虑地层温度和压力的页岩吸附气含量 计算新模型[J]. 天然气地球科学, 2012, 23(4): 791-796. Li Wuguang, Yang Shenglai, Xu Jing, et al. A new model for shale adsorptive gas amount under a certain geological conditions of temperature and pressure[J]. Natural Gas Geosciences, 2012, 23(4): 791-796.
[18] 姚艳斌, 刘大锰, 蔡益栋, 等. 基于NMR和X-CT的煤的孔裂隙精细 定量表征[J]. 中国科学: 地球科学, 2010, 40(11): 1598-1607. Yao Yanbin, Liu Dameng, Cai Yidong, et al. Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography[J]. Scientia Sinica Terrae, 2010, 40(11): 1598-1607.
[19] van Sickel W A, Kominz M A, Miller K G. Late Cretaceous and Cenozoic sea level estimates: Backstripping analysis of borehole data, onshore New Jersey[J]. Basin Research, 2004, 16(4): 451-465.
[20] 梁超, 姜在兴, 杨镱婷, 等. 四川盆地五峰组-龙马溪组页岩岩相及 储集空间特征[J]. 石油勘探与开发, 2012, 39(6): 691-697. Liang Chao, Jiang Zaixing, Yang Yiting, et al. Characteristics of shale lithofacies and reservoir space of the Wufeng- Longmaxi formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39 (6): 691-697.
[21] Jarvie D M. Shale gas: Making gas and oil from shale resource systems[R]. Dallas, TX, USA: Dalas Geological Society, 2010.
Outlines

/