PM10 and PM2.5 Emission Control by Electrostatic Precipitator (ESP) for Coal-fired Power Plants IV: Investigations on Electrostatic Precipitation by Means of 2D PIV Technique

  • SHEN Xinjun ,
  • ZHENG Qinzhen ,
  • NING Zhiyuan ,
  • WANG Shilong ,
  • HAN Ping ,
  • YAN Keping
Expand
  • 1. Institute of Industrial Ecology and Environment, Zhejiang University, Hangzhou 310028, China;
    2. Shenhua Guoneng Energy Group Corporation Limited, Beijing 100033, China;
    3. School of Science, Shenyang University of Technology, Shenyang 110870, China

Received date: 2014-10-22

  Revised date: 2014-10-27

  Online published: 2014-12-05

Abstract

This paper discusses PM10 (particle matter with a diameter less than 10 μm) grade collection efficiencies of a laboratory electrostatic precipitator (ESP) in terms of the electric field, corona discharge power, and gas flow patterns by means of the particle image velocimetry(PIV)and the electrical low pressure impactor (ELPI) technique. The wire-plate ESP has a plate-plate distance of 200 mm, together with a single or two high-voltage electrodes. Moxa-moxibustion smoke is used as the tracer for evaluation of the gas flow and particle grade collection efficiency. Experiments, performed in air with a total gas flow rate of 85 m3/h and initial particle mass concentration of around 33 mg/m3, show that with increasing the field strength or corona discharge power, the flow changes from regular vortexes around the corona wire to multi-vortexes inter-reacting each other. As a result, optimizing the distribution of corona discharge ion wind is the key to increase PM10 collection efficiencies and reduce the power consumption. In terms of the particle number concentration and the applied electric field or corona discharge power, two ESP performance regions can be distinguished: Below 3 kV/cm, the grade collection efficiency increases with the rise of field strength or ESP index; it tends to saturate or drop when the field becomes higher than 3 kV/cm.

Cite this article

SHEN Xinjun , ZHENG Qinzhen , NING Zhiyuan , WANG Shilong , HAN Ping , YAN Keping . PM10 and PM2.5 Emission Control by Electrostatic Precipitator (ESP) for Coal-fired Power Plants IV: Investigations on Electrostatic Precipitation by Means of 2D PIV Technique[J]. Science & Technology Review, 2014 , 32(33) : 43 -50 . DOI: 10.3981/j.issn.1000-7857.2014.33.005

References

[1] Ohyama R, Urashima K, Chang J S. Numerical modeling of wire-plateelectrostatic precipitator for control of submicron and ultra-fine particles[J]. Journal of Aerosol Science, 2000, 31: 162-163.
[2] Mizuno A. Electrostatic precipitation[J]. IEEE Transactions on Dielectricsand Electrical Insulation, 2000, 7(5): 615-624.
[3] Blanchard D, Dumitran L M, Atten P. Effect of electro-aero-dynamicallyinduced secondary flow on transport of fine particles in an electrostaticprecipitator[J]. Journal of Electrostatics, 2001, 59(51/52): 212-217.
[4] Mizeraczyk J, Kocik M, Podlinski J. Flow diagnostics using particle imagevelocimetry method[J]. Laser Technology VIII: Applications of Lasers,2007, 6598: 1-9.
[5] Mizeraczyk J, Kocik M, Dekowski J. Measurements of the velocity fieldof the flue gas flow in an electrostatic precipitator model using PIVmethod[J]. Journal of Electrostatics, 2001, 59(51/52): 272-277.
[6] Podlinski J, Dekowski J, Mizeraczyk J. Electrohydrodynamic gas flow ina positive polarity wire-plate electrostatic precipitator and the relateddust particle collection efficiency[J]. Journal of Electrostatics, 2006, 64(3/4): 259-262.
[7] Podlinski J, Niewulisa A, Mizeraczyk J. ESP performance for variousdust densities[J]. Journal of Electrostatics, 2008, 66(5/6): 246-253.
[8] Mizeraczyk J, Dekowski J, Podlihnski J. Laser flow visualization andvelocity fields by particle image velocimetry in an electrostaticprecipitator model[J]. Journal of Visualization, 2003, 6(2): 125-133.
[9] Podlinski J, Dekowski J, Kocik M, et al. Measurement of the flowvelocity field in multi-field wire-plate electrostatic precipitator[J].Czechoslovak Journal of Physics, 2004, 54(3): 922-930.
[10] Podlinski J, Dekowski J, Mizeraczyk J. EHD flow in a wide electrodespacing spike-plate electrostatic precipitator under positive polarity[J].Journal of Electrostatics, 2006, 64(7/9): 498-505.
[11] Podlinski J, Niewulis A, Mizeraczyk J. Electrohydrodynamic flow andparticlecollectionefficiencyofaspike-platetypeelectrostatic precipitator[J]. Journal of Electrostatics, 2009, 67(2/3): 99-104.
[12] Niewulis A, Berendt A, Podlinski J. Electrohydrodynamic flow patternsand collection efficiency in narrow wire- cylinder type electrostaticprecipitator[J]. Journal of Electrostatics, 2013, 71(4): 808-814.
[13] Niewulis A, Podlinski J, Kocik M. EHD flow measured by 3D PIV ina narrow electrostatic precipitator with longitudinal- to- flow wireelectrode and smooth or flocking grounded plane electrode[J]. Journalof Electrostatics, 2007, 65(12): 728-734.
[14] Niewulis A, Podlinski J, Mizeraczyk J. Electrohydrodynamic flow patternsin a narrow electrostatic precipitator with longitudinal or transversewire electrode[J]. Journal of Electrostatics, 2009, 67(2/3): 123-127.
[15] Podlinski J, Niewulis A, Mizeraczyk J. Electrohydrodynamic turbulentflow in a wide wire-plate electrostatic precipitator measured by 3DPIV method[C]//Proceeding of the 11th International Conference onElectrostatic Precipitation. Hangzhou: Zhejiang University Press,2008: 134-139.
[16] Podlinski J, Niewulis A, Mizeraczyk J. Electrohydrodynamic flow in awire-plate non-thermal plasma reactor measured by 3D PIV method[J]. The European Physical Journal D, 2009, 54(2): 153-158.
[17] Zouzou N, Dramane B, Moreau E. EHD flow and collection efficiencyof a DBD ESP in wire-to-plane and plane-to-plane configurations[J].IEEE Transaction on Industry Applications, 2011, 47(1): 336-343.
[18] Sattar S A. Influences of geometrical parameters upon electrostaticprecipitator efficiency[J]. The International Journal for Computationand Mathematics in Electrical and Electronic Engineering, 1991, 10(1): 27-43.
[19] Chang C L, Bai H. Effects of some geometric parameters on theelectrostatic precipitator efficiency at different operation indexes[J].Aerosol Science and Technology, 2000, 33(3): 228-238.
[20] Yang X, Kang Y, Zhong K. Effects of geometric parameters and electricindexes on the performance of laboratory- scale electrostaticprecipitators[J]. Journal of hazardous materials, 2009, 169(1): 941-947.
[21] Kim S H, Lee K W. Experimental study of electrostatic precipitatorperformance and comparison with existing theoretical predictionmodels[J]. Journal of Electrostatics, 1999, 48(1): 3-25.
[22] Glover W, Chan H K. Electrostatic charge characterization ofpharmaceutical aerosols using electrical low-pressure impaction (ELPI)[J]. Journal of Aerosol Science, 2004, 35(6): 755-764.
[23] Hsieh Y K, Chen L K, Hsieh H F, et al. Elemental analysis of airborneparticulate matter using an electrical low-pressure impactor and laserablation/inductively coupled plasma mass spectrometry[J]. Journal ofAnalytical Atomic Spectrometry, 2011, 26(7): 1502-1508.
[24] Zhu J B, Zhao Q X, Yao Y P, et al. Effects of high-voltage powersources on fine particle collection efficiency with an industrialelectrostatic precipitator[J]. Journal of Electrostatics, 2012, 70(3): 285-291.
Outlines

/