Imaging of Liver Biopsy Cells with Full-field Optical Coherence Tomography

  • ZHU Yue ,
  • GAO Wanrong
Expand
  • School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Received date: 2014-09-26

  Revised date: 2014-11-03

  Online published: 2014-12-17

Abstract

Aninterference microscope for ultrahigh-resolution full-field optical coherence tomography (FFOCT) system was developed for imaging of biological media. The experimental setup is based on a Linnik-type interferometer illuminated by a low coherence tungsten halogen lamp and equipped with high numerical aperture microscope objectives. The theoretical resolution of the system is 0.7 μm×0.7 μm(lateral× axial). En-face tomographic images were obtained by a combination of interferometric images recorded by a smart CCD camera and 3-step phase-shifting algorithm. Previous studies usually used 4-step phase-shifting algorithm with less speed of shifting the phase. Three-dimensional images can then be generated from these tomographic images. Compared with fluorescence labeling image, FFOCT has advantages of low cost, no damage, and ultrahighresolution. En-face images of onion surface cellsand liver biopsy tissue cells showed the excellent performance of the system for generating en-face images of biological tissues. Our system is characterized by its high resolution, low cost and simple arrangement for adjustment, providing a practical method for FFOCT imaging.

Cite this article

ZHU Yue , GAO Wanrong . Imaging of Liver Biopsy Cells with Full-field Optical Coherence Tomography[J]. Science & Technology Review, 2014 , 32(34) : 33 -36 . DOI: 10.3981/j.issn.1000-7857.2014.34.003

References

[1] Beaurepaire E, Boccara A C. Full-field optical coherence microscopy[J]. Optics Letters, 1998, 23(4): 244-246.
[2] Dubois A, Vabre L, Boccara A, et al. High-resolution full-field optical coherence tomography with a Linnik microscope[J]. Applied Optics, 2002, 41(4): 805-812.
[3] Dubois A, Grieve K, Moneron G, et al. Ultrahigh-resolution full-field optical coherence tomography[J]. Applied Optics, 2004, 43(14): 2874-2883.
[4] Dubois A, Moneron G, Grieve K, et al. Three-dimensional cellularlevel imaging using full-field optical coherence tomography[J]. Physics in Medicine and Biology, 2004, 49: 1227-1234.
[5] Hariharan P, Roy M. White-light interferometry phase-stepping for surface profiling[J]. Journal of Modern Optics, 1994, 41(11): 2197-2201.
[6] Latrive A, Boccara A C. In vivo and in situ cellular imaging full -field optical coherence tomography with a rigid endoscopic probe[J]. Biomedical Optics Express, 2011, 2(10): 2897-2904.
[7] Nahas A, Bauer M, Roux S, et al. 3D static elastography at the micrometer scale using full field OCT[J]. Biomedical Optics Express, 2013, 4(10): 2138-2149.
[8] Moneron G, Boccara A, Dubois A. Polarization-sensitive full-field opticalcoherence tomography[J]. Optics Letters, 2007, 32(14): 2058-2060.
[9] Akiba M, Chan K P, Tanno N. Full-field optical coherence tomography by two-dimensionalheterodyne detection with a pair of CCD cameras[J]. Optics Letters, 2003, 28(10): 816-818.
[10] Zheng J, Lu D, Chen T, et al. Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography[J]. Journal of Biomedical Optics, 2013, 17(7): 070503-1-070503-3.
[11] Vabre L, Dubois A, Boccara A C. Thermal-light full-field optical coherence tomography[J]. Optics Letters, 2002, 27(7): 530-532.
[12] Lu S, Chang C, Kao C. Full-field optical coherence tomography using immersion Mirau interference microscope[J]. Applied Optics, 2013, 52 (18): 4400-4403.
[13] Watanabe Y, Hayasaka Y, Sato M, et al. Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer[J]. Applied Optics, 2005, 44(8): 1378-1392.
[14] Moreau J, Loriette V, Boccara A. Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography[J]. Applied Optics, 2003, 42(19): 3800-3810.
[15] SeobPark K, Choi W J, Eom T J, et al. Single-camera polarizationsensitive full-field optical coherence tomography with polarization switch[J]. Journal of Biomedical Optics, 2013, 18(10): 100504-1-100504-3.
[16] Srivastava V, Nandy S, Mehta D S. High-resolution full-field spatial coherence gated optical tomography using monochromatic light source[J]. Applied Physics Letters, 2013, 103: 103702-1-103702-5.
[17] 杨亚良. 全场光学相干层析成像研究[D]. 杭州: 浙江大学, 2008. Yang Yaliang. Full-field optical coherence tomography[D]. Hangzhou: Zhejiang University, 2008.
[18] 李静娜. 全场光学相干层析成像的信号分析和试验研究[D]. 南京: 南京理工大学, 2008. Li Jingna. Signal analysis and experimental study of full-field optical coherence tomography[D]. Nanjing: Nanjing University of Science and Technology, 2008.
[19] Shoude C, Youxin M, Sherif S, et al. Full-field optical coherence. tomography used for security and document identity[J]. Proceedings of SPIE, 2006, 6042: 60420Q-1-60420Q-9.
[20] Fischer D G, Ovryn B. Phase shifting optical coherence tomography[J]. SPIE, 2001, 4251: 97-101.
[21] 杨艳艳, 张改平, 王选年, 等. 猪瘟病毒单克隆抗体的制备及其免疫 组织化学研究[J]. 中国兽医科学, 2006, 36(10): 782-786. Yang Yanyan, Zhang Gaiping, Wang Xuannian, et al. Preparation and immune histochemical studies of monoclonal antibody against CSFV[J]. Chinese Veterinary Science, 2006, 36(10): 782-786.
Outlines

/