[1] Bauch A, Achkar J, Bize S, et al. Comparison between frequency standards in Europe and USA at the 10-15 uncertainty level[J]. Metrologia, 2006, 43 (1): 109-120.
[2] Levine J. A review of time and frequency transfer methods[J]. Metrologia, 2008, 45(6): 162-174.
[3] Michito I, Mizuhiko H, Kuniyasu I, et al. Two-way satellite time and frequency transfer networks in pacific rim region[J]. IEEE Transactions on Instruments Measurement, 2001, 50(2): 559-562.
[4] Allan D W, Weiss M A. Accurate time and frequency transfer during common-view of a GPS satellite[C]. 34th Annual Frequency Control Symposium, Fort Monmouth, New Jersey, USA, May 28-30, 1980.
[5] Fortier T M, Kirchner M S, Quinlan F, et al. Generation of ultrastable microwaves via optical frequency division[J]. Nature Photonics, 2011, 5: 425-429.
[6] Jiang Y Y, Ludlow A D, Lemke N D, et al. Making optical atomic clocks more stable with 10-16 level laser stabilization[J]. Nature Photonics, 2011, 5: 158-161.
[7] Ludlow A D, Zelevinsky T, Campbell G K, et al. Sr lattice clock at 1× 10-16 fractional uncertainty by remote optical evaluation with a Ca clock[J]. Science, 2008, 319(5871): 1805-1808.
[8] Hong F L, Musha M, Takamoto M, et al. Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer[J]. Optics Letters, 2009, 34(5): 692-694.
[9] Predehl K, Grosche G, Raupach S M F, et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 2012, 336(6080): 441-444.
[10] Foreman S M, Ludlow A D, Miranda M H G, et al. Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10-17[J]. Physical Review Letters, 2007, 99(15): 153601.
[11] Williams P A, Swann W C, Newbury N R. High-stability transfer of an optical frequency over long fiber-optic links[J]. Journal of the Optical Society of America B, 2008, 25(8): 1284-1293.
[12] Jiang H, Kéfélian F, Crane S, et al. Long-distance frequency transfer over an urban fiber link using optical phase stabilization[J]. Journal of the Optical Society of America B, 2008, 25(12): 2029-2035.
[13] Grosche G, Terra O, Predehl K, et al. Optical frequency transfer via 146 km fiber link with 10-19 relative accuracy[J]. Optics Letters, 2009, 34(15): 2270-2272.
[14] Musha M, Hong F L, Nakagawa K, et al. Coherent optical frequency transfer over 50-km physical distance using a 120-km long installed telecom fiber network[J]. Optics Express, 2008, 16(21): 16459-16466.
[15] Wang B, Gao C, Chen W L, et al. Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level[J]. Scientific Reports, 2012, 2: 556.
[16] Wang B, Gao C, Chen W L, et al. Fiber-based time and frequency dissemination between THU and NIM[C]. IEEE International Frequency Control Symposium (FCS), Baltimore, MD, USA, May 21-24, 2012.
[17] Wang B, Gao C, Chen W L, et al. A 10-18/day fiber-based RF frequency dissemination chain[C]. CLEO: Science and Innovations, San Jose, California, USA, May 6-11, 2012.
[18] Wang B, Gao C, Chen W L, et al. Precise time and frequency synchronization at the 5×10-19 level[C]. The 5th International Symposium on Cold Atom Physics, The Three Gorges, China, June 23-27, 2012.
[19] 王波, 高超, 陈伟亮, 等. 原子时信号的高稳定度传输与比对[C]. 全国 时间频率学术会议, 北京, 10.20-21, 2011. Wang Bo, Gao Chao, Chen Weiliang, et al. Precise time and frequency comparison of the atomic frequency standard[C]. China Time and Frequency Symposium, Beijing, October 20-21, 2011.
[20] Fujieda M, Kumagai M, Gotoh T, et al. Ultrastable frequency dissemination via optical fiber an NICT[J]. IEEE Transactions on Instruments Measurement, 2009, 58(4): 1223-1228.
[21] Lopez O, Amy-Klein A, Lours M, et al. High-resolution microwave frequency dissemination on an 86-km urban optical link[J]. Applied Physics B, 2010, 98(4): 723-727.
[22] Marra G, Margolis H S, Lea S N, et al. High-stability microwave frequency transfer by propagation of an optical frequency comb over 50 km of optical fiber[J]. Optics Letters, 2011, 35(7): 1025-1027.
[23] Hou D, Li P, Liu C, et al. Long-term stable frequency transfer over an urban fiber link using microwave phase stabilization[J]. Optics Express, 2010, 19(2): 506-511.
[24] Ashby N. Relativity in the global positioning system[J]. Living Reviews in Relativity, 2003, 6(1): 1-42.
[25] Wang Z B, Zhao L, Wang S G, et al. COMPASS time synchronization and dissemination[J]. Science China Physics, Mechanics and Astronomy, 2014, 57(9): 1788-1804.
[26] Gao C, Wang B, Chen W L, et al. Fiber based multiple-access ultrastable frequency dissemination[J]. Optics Letters, 2012, 37(22): 4690-4692.
[27] Microsemi. MHM2010 active hydrogen maser datasheet[EB/OL]. [2014-01-12]. http://www.microsemi.com/products/timing-synchronizationsystems/ time-frequency-references/active-hydrogen-maser/mhm-2010-active-hydrogen-maser#documents.
[28] Robertson D S. Geophysical applications of very-long-baseline interfereometry[J]. Review of Modern Physics, 1991, 63(4): 899-918.
[29] Vanier J, Audoin C. The quantum physics of atomic frequency standard[M]. London UK: IOP Publishing Limited, 1989.