Lake Level Changes Indicated by Grain-size of Core SL-1 Sediments Since 5.33 ka BP in Selin Co, Central Qinghai-Tibetan Plateau

  • WANG Hailei ,
  • ZHENG Mianping
Expand
  • MLR Key Laboratory of Saline Lake Resources and Environments; Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

Received date: 2014-09-15

  Revised date: 2014-10-31

  Online published: 2014-12-25

Abstract

This paper studies the chronology and the grain-size of core sediments retrieved from deep area of Selin Co, central Qinghai-Tibetan Plateau (QTP), to reconstruct the lake level changes since 5.33 ka BP. Lake level changes of Selin Co are in several distinct stages: 5.33-4.25 ka BP sees a continuous high lake level with tiny fluctuations; the lake level goes down during the period of 4.25-2.20 ka BP, and the wind contributes much to the sedimentary of Selin Co; 2.20-1.90 ka BP is a stable low lake level period; 1.90 ka BP-present sees a high lake level since 5.33 ka BP with several short and fast fluctuations. 0.1 ka and 0.2 ka cycles are recovered during this period. The low lake level usually lasts for only 20-50 a. The 0.20 ka cycle, which can also be seen in the temperature sequence recorded in the ice core from the QTP, goes through the whole period since 5.33 ka BP, indicating that on the centennial scale, the air temperature is important for the lake level variations of Selin Co.

Cite this article

WANG Hailei , ZHENG Mianping . Lake Level Changes Indicated by Grain-size of Core SL-1 Sediments Since 5.33 ka BP in Selin Co, Central Qinghai-Tibetan Plateau[J]. Science & Technology Review, 2014 , 32(35) : 29 -34 . DOI: 10.3981/j.issn.1000-7857.2014.35.003

References

[1] 施雅风, 李吉均, 李炳元, 等. 晚新生代青藏高原的隆升与东亚环境变 化[J]. 地理学报, 1999, 54(1): 10-20. Shi Yafeng, Li Jijun, Li Bingyuan, et al. Uplift of the Qinghai-Xizang (Tibet) Plateau and east Asia environmental change during Late Cenozoic[J]. Acta Geographica Sinica, 1999, 54(1): 10-20.
[2] 李吉均, 方小敏, 潘保田, 等. 新生代晚期青藏高原强烈隆起及其对周 边环境的影响[J]. 第四纪研究, 2001, 21(5): 381-391. Li Jijun, Fang Xiaomin, Pan Baotian et al. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area[J]. Quaternary Sciences, 2001, 21(5): 381-391.
[3] Fang X M, Zhang W L, Meng Q Q, et al. High- resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 293-306.
[4] Cai M T, Fang X M, Wu F L, et al. Pliocene-Pleistocene stepwise drying of Central Asia: Evidence from paleomagnetism and sporopollen record of the deep borehole SG-3 in the western Qaidam Basin, NE Tibetan Plateau[J]. Global and Planetary Change, 2012, 94/95: 72-81.
[5] Thompson L G, Mosley-Thompson E, Davis M E, et al. Holocene-late Pleistocene climate ice core record from Qinghai- tibetan[J]. Science, 1989, 246(4929): 474-477.
[6] Yao T D, Thompson L G, Shi Y F, et al. Climate variation since the last interglaciation recorded in the Guliya ice core[J]. Science in China, Series D, 1997, 40(6): 662-668.
[7] Yang B, Bräuning A, Shi Y F. Late Holocene temperature fluctuations on the Tibetan Plateau[J]. Quaternary Science Review, 2003, 22: 2335- 2344.
[8] Sheppard P R, Tarasoy P E, Graumlich L J, et al. Annual precipitation since 515 BC reconstructed from living and fossil juniper growthof northeastern Qinghai Province, China[J]. Climate Dynamics, 2004, 23: 869-881.
[9] 勾晓华, 陈发虎, 杨梅学, 等. 青藏高原东北部树木年轮记录揭示的最 高最低温的非对称变化[J]. 中国科学, D辑, 2007, 37(11): 1480-1492. Gou Xiaohua, Chen Fahu, Yang Meixue et al. Asymmetric Change of Maximum and Minimum Temperature revealed from the tree ring record in the north east of Qinghai- Tibetan Plateau[J]. Science in China, Series D, 2007, 37(11): 1480-1492.
[10] 刘兴起, 沈吉, 王苏民, 等. 16 ka以来青海湖湖相自生碳酸盐沉积记 录的古气候[J]. 高校地质学报, 2003, 9(1): 38-46. Liu Xingqi, Shen Ji, Wang Sumin, et al. A 16000-year paleoclimatic record derived from authigenetic carbonate of lacustrine sediment in Qinghai lake[J]. Geological Journal of China Universities, 2003, 9(1): 38-46.
[11] 沈吉, 刘兴起, Matsumoto R, 等. 晚冰期以来青海湖沉积物多指标高 分辨率的古气候演化[J]. 中国科学, D辑, 2004, 34(6): 582-589. Shen Ji, Liu Xingqi, Matsumoto R et al. High- resolution palaeoclimatic evolution based on several proxies from Qinghai lake sediments since the Late Glacial[J]. Science in China, Series D, 2004, 34(6): 582-589.
[12] 李世杰, 王小天, 夏威岚, 等. 青藏高原苟鲁错湖泊沉积记录的小冰 期气候变化[J]. 第四纪研究, 2004, 24(5): 578-584. Li Shijie, Wang Xiaotian, Xia Weilan et al. The little age climate fluctuations derived from lake sediments of Goulucuo, Qinghai-xizang Plateau[J]. Quaternary Sciences, 2004, 24(5): 578-584.
[13] 李世杰, 张宏亮, 施雅风, 等. 青藏高原甜水海盆地MIS 3阶段湖泊 沉积与环境变化[J]. 第四纪研究, 2008, 28(1): 122-131. Li Shijie, Zhang Hongliang, Shi Yafeng et al. A high resolution MIS3 environmental change record derived from lacustrine deposit of Tianshuihai Lake, Qinghai- tibetan Plateau[J]. Quaternary Sciences, 2008, 28(1): 122-131.
[14] 刘禹, 安芷生, Linderholm H W, 等. 青藏高原中东部过去2485年以 来温度变化的树轮记录[J]. 中国科学, D辑, 2009, 39(2): 166-176. Liu Yu, An Zhisheng,. Linderholm H W, et al. Temperature changes recorded in tree ring in the central and east part of the Qinghai- Tibetan Plateau since 2485a[J]. Science in China, Series D, 2009, 39 (2): 166-176.
[15] 赖忠平, 周杰, 卢演俦, 等. 风成沉积物红外及绿光释光测年比较研 究[J]. 海洋地质与第四纪地质, 2000, 20(1): 57-61. Lai Zhongping, Zhou Jie, Lu Yanchou, et al. Comparison of IRSL and GLSL dating of Aeolian sediments[J]. Marine Geology & Quaternary Geology, 2000, 20(1): 57-61.
[16] 周爱锋, 强明瑞, 张家武, 等. 苏干湖沉积物纹层计年和210Pb, 137Cs测 年对比[J]. 兰州大学学报: 自然科学版, 2008, 44(6): 15-18. Zhou Aifeng, Qiang Mingrui, Zhang Jiawu, et al. Comparison of varve chronology and 210Pb, 137Cs dating from the Sugan lake sediment[J]. Journal of Lanzhou University: Natural Sciences, 2008, 44(6): 15-18.
[17] Neugebauer I, Brauer A, Dräger N. A Younger Dryas varve chronology from the Rehwiesepalaeolake record in NE- Germany[J]. Quaternary Science Reviews, 2012, 36: 91-102.
[18] 刘光秀, 施雅风, 沈永平, 等. 青藏高原全新世大暖期环境特征之初 步研究[J]. 冰川冻土, 1997, 19(2): 114-123. Liu Guangxiu, Shi Yafeng, Shen Yongping et al. Holocencemegathermal environment in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 1997, 19(2): 114-123.
[19] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: lings to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857.
[20] Cosford J, Qing H, Eglington B, et al. East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China[J]. Earth and Planetary Science Letters, 2008, 275: 296-307.
[21] Weiss H, Courty M A, Wetterstrom W, et al. The genesis and collapse of third millennium North Mesopotamian civilizatio[J]. Science, 1993, 261(5124): 995-1004.
[22] Booth R K, Jackson S T, Forman S L, et al. A severe centennial-scale drought in mid-continental North America 4200 years ago and apparent global linkage[J]. The Holocene, 2005, 15: 321-328.
[23] Yao T D, Thompson L G. Trend and features of climatic changes in the past 5000 years recorded by the Dunde ice core[J]. Annals of Glaciology, 1992, 16: 21-24.
[24] 许靖华. 太阳、气候、饥荒与民族大迁移[J]. 中国科学, D辑, 1998, 28 (4): 366-384. Xu Jinghua. Sun, climate, famine and the great national migration[J]. Science in China, Series D, 1998, 28(4): 366-384.
[25] 张兰生, 方修琦, 任国玉, 等. 我国北方农牧交错带的环境演变[J]. 地 学前缘, 1997, 4(1): 127-136. Zhang Lansheng, Fang Xiuqi, Ren Guoyu et al. Environmental changes in the north China farming-grazing transitional zone[J]. Earth Science Frontiers, 1997, 4(1): 127-136.
[26] 吴文祥, 刘东生. 4000 a B.P.前后降温事件与中华文明的诞生[J]. 第 四纪研究, 2001, 21(5): 443-451. Wu Wenxiang, Liu Dongsheng. 4000a B.P. event and its implications for the origin of ancient Chinese civilization[J]. Quaternary Sciences, 2001, 21(5): 443-451.
[27] 达桑. 近50年来西藏色林错流域气温和降水的变化趋势[J]. 西藏科 技, 2011(1): 42-45. Da Sang. The trends of air temperature and precipitation changes in the past 50 years in Selincuo Lakearea, Tibet[J]. Science and Technology of Tibet, 2011(1): 42-45.
[28] Wang H L, Zheng M P. Grain-size of lake sediments in Selin Co, Tibet, links to lake level status[J]. Journal of Limnology, 2014, submitted.
[29] 林勇杰, 郑绵平, 王海雷. 青藏高原中部色林错矿物组合特征对晚全 新世气候的响应[J]. 科技导报, 2014, 32(35): 35-40. Lin Yongjie, Zheng Mianping, Wang Hailei. Late Holocene climatical and environmental evolutions inferred from mineralogical records in Selin Co, central Qinghai-Tibetan Plateau[J]. Science & Technology Review, 2014, 32(35): 35-40.
[30] 吕鹏, 曲永贵, 李庆武, 等. 藏北地区色林错、班戈错湖盆扩张及现代 裂陷活动[J]. 吉林地质, 2003, 22(2): 15-19. Lü Peng, Qu Yonggui, Li Qingwu, et al. Shelincuo and Banggecuo extensional lake basins in the northern part of Tibet and present chasmic activities[J]. Jinlin Geology, 2003, 22(2): 15-19.
[31] Li D W, Li Y K, Ma B Q, et al. Lake-level fluctuations since the Last Glaciation in Selin Co (lake), Central Tibet, investigated using optically stimulated luminescence dating of beach ridges[J]. Environmental Research Letters, 2009, 4: 045204.
[32] 顾兆炎, 刘嘉麒, 袁宝印, 等. 12000年来青藏高原季风变化——色 林错沉积物地球化学的证据[J]. 科学通报, 1993, 38(1): 61-64. Gu Zhaoyan, Liu Jiaqi, Yuan Baoyin, et al. Qinghai-tibetan Plateau Monsoon variations since 12 ka BP, records from the geochemistry of lakes ediments in Selincuo[J]. Chinese Science Bulletin, 1993, 38(1): 61-64.
Outlines

/