Multiparameter optimization method for downward drift mining based on PLS

  • SHANG Xueyi ,
  • LI Xibing ,
  • WANG Zewei ,
  • PENG Kang
  • 1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China;
    2. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China

Received date: 2014-06-27

  Revised date: 2014-09-28

  Online published: 2015-02-02


To study the relationship between multiple parameters and stability of downward drift, orthogonal simulation and partial least squares regression were used to analyze factors affecting the stability of downward drift. Safety coefficient and reliability analysis were applied to optimize these parameters. On the basis of that, an industrial test was conducted. The results show that: 1) The factors affecting tensile stress of the loading layer in a descending sequence in terms of significance are thickness of the loading layer, drift width, drift height, two-sided elastic modulus of the drift, elastic modulus of the loading layer and Poisson ratio of the backfill, and the first three factors are more effective than the others. 2) Satisfactory fitness and forecast were obtained through partial least squares regression with errors controlled within 15%. 3) The reliability analysis is more reasonable than the safety coefficient method in optimizing multiple parameters, which can achieve safer, more efficient and economical downward drift exploitation. The satisfactory results of industrial test indicate that partial least squares regression has theoretical and practical values in optimizing multiple parameters for downward drift mining.

Cite this article

SHANG Xueyi , LI Xibing , WANG Zewei , PENG Kang . Multiparameter optimization method for downward drift mining based on PLS[J]. Science & Technology Review, 2015 , 33(1) : 63 -69 . DOI: 10.3981/j.issn.1000-7857.2015.01.011


[1] 韩斌, 吴爱祥, 邓建, 等. 基于可靠度理论的下向进路胶结充填技术分 析[J]. 中南大学学报: 自然科学版, 2006, 37(3): 583-587. Han Bin, Wu Aixiang, Deng Jian, et al. Backfill technical analysis based on reliability theory in the underhand drift cut-and-filling stoping[J]. Journal of Central South University: Science and Technology Edition, 2006, 37(3): 583-587.
[2] 韩斌. 金川二矿区充填体可靠度分析与1#矿体回采地压控制优化研 究[D]. 长沙: 中南大学, 2004. Han Bin. Study on backfill reliability analysis and ground control optimization on 1# ore -body in Jinchuan No. 2 mine area[D]. Changsha: Central South University, 2004.
[3] 范文录, 李夕兵, 周子龙. 基于可靠度理论的钢筋混凝土假顶强度确 定与配筋设计研究[J]. 矿冶工程, 2013, 33(4): 30-35. Fan Wenlu, Li Xibing, Zhou Zilong. Strength determination for reinforced concrete false roof and reinforcement design based on reliability theory[J]. Mining and Metallurgical Engineering, 2013, 33(4): 30-35.
[4] 顾伟, 张立亚, 谭志祥, 等. 基于弹性薄板模型的开放式充填顶板稳定 性研究[J]. 采矿与安全工程学报, 2013, 30(6): 886-891. Gu Wei, Zhang Liya, Tan Zhixiang, et al. Study on roof stability of open backfilling based on elastic plate model[J]. Journal of Mining & Safety Engineering, 2013, 30(6): 886-891.
[5] O'Hearn B, Swan G. The use of models in sill mat design at Falconbridge[C]//Innovations in Mining Backfill Technology: Proceedings of the 4th International Symposium on Mining with Backfill. Brookfield, USA: A A Balkema Publishers, 1989: 139-146.
[6] 赵彬. 焦家金矿尾砂固结材料配比试验及工艺改造方案研究[D]. 长 沙: 中南大学, 2009. Zhao Bin. Study of tailing-cemented materials proportion and backfilling technology transformation[D]. Changsha: Central South University, 2009.
[7] Yamaguchi U, Yamatomi J. An experimental study to investigate the effect of backfill for the ground stability[C]//Innovations in Mining Backfill Technology: Proceedings of the 4th International Symposium on Mining with Backfill. Brookfield, USA: A A Balkema Publishers, 1989: 71-80.
[8] 刘强, 许新启, 桑守勤. 下向充填法充填程度与采场稳定性数值模拟[J]. 有色金属, 2000, 52(1): 17-21. Liu Qiang, Xu Xinqi, Sang Shouqin. Numerical simulation on stability of underhand cut- and- fill method with different filling extent[J]. Nonferrous Metal, 2000, 52(1): 17-21.
[9] 姚林, 阳建宏, 徐金梧, 等. 基于偏最小二乘回归模型的带钢热镀锌质 量监控方法[J]. 北京科技大学学报, 2007, 29(6): 627-631. Yao Lin, Yang Jianhong, Xu Jinwu, et al. Quality monitoring method of strip hot-dip galvanizing based on partial least squares regression[J]. Journal of University of Science and Technology Beijing, 2007, 29(6): 627-631.
[10] 王惠文. 偏最小二乘回归方法及其应用[M]. 北京: 国防工业出版社, 1999. Wang Huiwen. Partial least squares method and applications[M]. Beijing: National Defence Industry Press, 1999.
[11] Wold S, Sjöström M, Eriksson L. PLS- regression: A basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 58(2): 109-130.
[12] 王玉白, 张宪堂, 李树忱. 玲珑金矿深部应力分析及岩爆防治措施研 究[J]. 岩土力学, 2006, 27(增1): 1401-1404. Wang Yubai, Zhang Xiantang, Li Shuzhen. Analysis of deep rock stress and prevention methods of rock burst in Linglong gold mine[J]. Rock and Soil Mechanics, 2006, 27(Suppl 1): 1401-1404.
[13] 蔡美峰, 孔留安, 李长洪, 等. 玲珑金矿主运巷塌陷治理区稳定性动 态综合监测与评价[J]. 岩石力学与工程学报, 2007, 26(5): 886-894. Cai Meifeng, Kong Liu'an, Li Changhong, et al. Dynamic comprehensive monitoring and assessment of stability of collapsed area after supporting in main transport roadway in Linglong gold mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 886-894.
[14] 蔡美峰, 刘卫东, 李远. 玲珑金矿深部地应力测量及矿区地应力场分 布规律[J]. 岩石力学与工程学报, 2010, 29(2): 227-233. Cai Meifeng, Liu Weidong, Li Yuan. In-situ stress measurement at deep position of Linglong gold mine and distribution law of in-situ stress field in mine area[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 227-233.
[15] 孙恒虎, 刘文永, 黄玉诚, 等. 高水固结充填采矿[M]. 北京: 机械工业 出版社, 1998. Sun Henghu, Liu Wenyong, Huang Yucheng, et al. Mining technology backfilled by high-water solidified material[M]. Beijing: China Machine Press, 1988.
[16] 陈亚力, 裘亚峥, 刘诚. 概率论与数理统计[M]. 北京: 科学出版社, 2008. Chen Yali, Qiu Yazheng, Liu Cheng. Probability and mathematical statistics[M]. Beijing: Sciences Press, 2008.
[17] 陈玉民, 李夕兵. 海底大型金属矿床安全高效开采技术[M]. 北京: 冶 金工业出版社, 2013. Chen Yumin, Li Xibing. Research on technology of efficient and safe mining in large-undersea metal deposit[M]. Beijing: Metallurgical Industry Press, 2013.