Characteristics of mechanical response of surrounding rocks in deep hole pillarless retreating mining at deep stope

  • LUO Zhouquan ,
  • CHEN Jie ,
  • XIE Chengyu ,
  • WANG Wei ,
  • QIN Yaguang ,
  • CHEN Yijun
Expand
  • 1. School of resources and Safety engineering, Central South University, Changsha 410083, China;
    2. 96317 Unit of People's Liberation Army, Yichun 336000, China

Received date: 2014-06-05

  Revised date: 2014-09-28

  Online published: 2015-02-02

Abstract

A three-dimensional numerical analysis model was developed using the complex geological modeling techniques, Surpac and FLAC3D. The initial geo-stress field was obtained by using multiple linear regression method, and the distribution law of in-situ geo- stress field around the stope was obtained by geometric cross- scale model- building technology. On the basis of that, the characteristics of mechanical response of surrounding rocks in deep hole pillarless retreating mining at deep stope were studied. The results showed that: 1) The maximum tensile stress of 0.40 MPa and the maximum horizontal displacement of 28.2 mm were observed at south side of the stope near the Y-central axis. The maximum vertical stress of surrounding rocks was found to be significant at stope roof near the Y-central axis with the maximum value of 27.43 mm. Plastic failure occurred in these corresponding regions. 2) Field monitoring and security measures need to be strengthened near the Y-central axis. The hole net parameter needs to be adjusted in eastward lateral caving due to accumulated damage of blasting. In the south side of the stope, it is necessary to increase presplit holes and reduce single hole explosive load and the initiation dose of each segment to prevent the overbreak of the pillar to affect the stability of the entire extent.

Cite this article

LUO Zhouquan , CHEN Jie , XIE Chengyu , WANG Wei , QIN Yaguang , CHEN Yijun . Characteristics of mechanical response of surrounding rocks in deep hole pillarless retreating mining at deep stope[J]. Science & Technology Review, 2015 , 33(1) : 70 -74 . DOI: 10.3981/j.issn.1000-7857.2015.01.012

References

[1] 董金奎, 冯夏庭, 张希巍, 等. 地下采场破碎岩体稳定性评价与参数优 化[J]. 东北大学学报: 自然科学版, 2013, 34(9): 1322-1326. Dong Jinkui, Feng Xiating, Zhang Xiwei, et al. Stability evaluation and parameter optimization on the fractured rock mass around underground stope[J]. Journal of Northeastern University: Natural Science Edition, 2013, 34(9): 1322-1326.
[2] 杨宇江, 庄文广, 王照亚, 等. 李元辉基于强度折减法的地下采场稳定 性分析[J]. 东北大学学报: 自然科学版, 2011, 32(6): 864-867. Yang Yujiang, Zhuang Wenguang, Wang Zhaoya, et al. Stability analysis of underground stope based on strength reduction theory[J]. Journal of Northeastern University: Natural Science Edition, 2011, 32 (6): 864-867.
[3] 徐文彬, 宋卫东, 杜建华, 等. 崩落法转阶段嗣后充填法采场稳定性分 析[J]. 北京科技大学学报, 2013, 35(4): 416-422. Xu Wenbin, Song Weidong, Du Jianhua, et al. Stability analysis of a backfill stope due to transforming from bloke caving to stage backfill[J]. Journal of University of Science and Technology Beijing, 2013, 35(4): 416-422.
[4] 王新民, 王长军, 张钦礼, 等. 基于ANSYS程序下的采场稳定性分析[J]. 金属矿山, 2008(8): 17-20. Wang Xinming, Wang Changjun, Zhang Qinli, et al. ANSYS based stability analysis of stope[J]. Metal Mine, 2008(8): 17-20.
[5] 李远耀, 殷坤龙, 代云霞. 基于广义Hoek-Brown准则强度折减法的岩 坡稳定性分析[J]. 岩土力学, 2008, 28(增1): 347-352. Li Yuanyao, Yin Kunlong, Dai Yunxia. Stability analysis of rock slope by strength reduction method based on generalized Hoek-Brown failure criterion[J]. Rock and Soil Mechanics, 2008, 28(Suppl 1): 347-352.
[6] 杨泽, 侯克鹏, 李克钢, 等. 云锡大屯锡矿岩体力学参数的确定[J]. 岩 土力学, 2010, 31(6): 1923-1928. Yang Ze, Hou Kepeng, Li Kegang, et al. Determination of mechanical parameters of rock mass from Yunxi Datun Tin mine[J]. Rock and Soil Mechanics, 2010, 31(6): 1923-1928.
[7] 侯明勋, 葛修润. 岩体初始地应力场分析方法研究[J]. 岩土力学, 2007, 28(8): 1626-1630. Hou Mingxun, Ge Xiurun. Study on fitting analysis of initial stress field in rock masses[J]. Rock and Soil Mechanics, 2007, 28(8): 1626-1630.
[8] 郭怀志, 马启超, 薛玺成, 等. 岩体初始应力场的分析方法[J]. 岩土工 程学报, 1983, 5(3): 64-75. Guo Huaizhi, Ma Qichao, Xue Xicheng, et al. The analytical method of the initial stress field for rock masses[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(3): 64-75.
[9] 刘泉声, 刘恺德. 淮南矿区深部地应力场特征研究[J]. 岩土力学, 2012, 33(7): 2089-2096. Liu Quansheng, Liu Kaide. Characteristics of in- situ stress field for deep levels in Huainan coal mine[J]. Rock and Soil Mechanics, 2012, 33(7): 2089-2096.
[10] 孙礼健, 朱元清. 初始地应力场分析方法的研究[J]. 地震地磁观测与 研究, 2008, 29(3): 14-21. Sun Lijian, Zhu Yuanqing. The research progress on numerical analysis method of initial geostress[J]. Seismological and Geomagnetic Observation and Research, 2008, 29(3): 14-21.
[11] 石洪超, 丁宁, 张继春. 爆破动力作用下小净距隧道围岩振动效应分 析[J]. 爆破, 2008, 25(1): 74-78. Shi Hongchao, Ding Ning, Zhang Jichun. Analysis of vibration effects on surrounding rock for small clear distance tunnel under the dynamic action of blasting[J]. Blasting, 2008, 25(1): 74-78.
[12] 罗周全, 吴亚斌, 刘晓明, 等. 基于Surpac的复杂地质体FLAC3D模型 生成技术[J]. 岩土力学, 2008, 29(5): 1334-1338. Luo Zhouquan, Wu Yabin, Liu Xiaoming, et al. FLAC3D modeling for complex geologic body based on Surpac[J]. Rock and Soil Mechanics, 2008, 29(5): 1334-1338.
[13] Badr A, Ashraf A F, Platten A K. Statistical variations in impact resistance of polypropylene fibre-reinforced concrete[J]. Inte
Outlines

/