Progress in regenerative cryocoolers

  • HU Jianying ,
  • LUO Ercang
Expand
  • Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2014-06-27

  Revised date: 2014-08-06

  Online published: 2015-02-09

Abstract

Many physical phenomena are accompanied with low temperature. Cryogenic technologies have been applied in many fields. Regenerative cryocooler is one of the two mainstream cryocoolers. It mainly includes three configurations: Stirling cryocooler, GM cryocooler and pulse tube cryocooler. The first two configurations have been well studied. Their disadvantages are short lifetime or low efficiency. Pulse tube cryocooler possesses high reliability and high efficiency, and has attracted much attention. Thermoacoustic theory explains the working mechanism of regenerative cryocoolers from the viewpoint of interactions between the pressure wave and solid surface, gradually becoming a universal theoretical tool for regenerative refrigerators. It also gave birth to thermoacoustic cryocoolers. The so-called double-acting thermoacoustic cryocooler possesses high efficiency and high reliability. It may be a good choice for future applications. Now, quite a few hotspots have arisen in the study of regenerative cryocoolers. Various research has been carried out in this field in the hope of improving the configuration and expanding the applications of regenerative cryocoolers.

Cite this article

HU Jianying , LUO Ercang . Progress in regenerative cryocoolers[J]. Science & Technology Review, 2015 , 33(2) : 99 -107 . DOI: 10.3981/j.issn.1000-7857.2015.02.015

References

[1] 陈光明, 陈国邦. 制冷与低温原理[M]. 2版. 北京: 机械工业出版社, 2009. Chen Guangming, Chen Guobang. The theory of refrigeration and cryogenics[M]. 2nd ed. Beijing: China Machine Press, 2009.
[2] 陈国邦, 汤珂. 小型低温制冷机原理[M]. 北京: 科学出版社, 2009. Chen Guobang, Tang Ke. The principle of cryogenic refrigerator[M]. Beijing: Science Press, 2009.
[3] Radebaugh R. Cryocoolers: The state of the art and recent developments[J]. Journal of Physics Condensed Matter, 2009, 21(16): 164219.
[4] Walker G. Stirling engines[M]. Oxford: Oxford University Press, 1980.
[5] 刘晓华, 纪国林, 许妙根. 斯特林制冷机中膜片弹簧的有限元分析[J]. 低温与特气, 1999(2): 28-30. Liu Xiaohua, Ji Guolin, Xu Miaogen. The finite element analysis for the Oxford flexure bearing in Stirling cryocoolers[J]. Low Temperature and Specialty Gases, 1999(2): 28-30.
[6] Davey G. Review of the Oxford cryocooler[J]. Advances in Cryogenic Engineering, 1990, 35(B): 1423-1430.
[7] Wong T E, Pan R B, Johnson A L. Novel linear flexure bearing[C]// Cryocoolers 7. New York: Plenum Press, 1992: 675-698.
[8] 朱建炳, 潘雁频. 空间制冷技术在星载红外遥感中的应用与发展[J]. 真空与低温, 2003, 9(1): 6-12. Zhu Jianbing, Pan Yanpin. Space refrigeration technology for infrared remote sensing in satellites[J]. Vacuum and Low Temperature, 2003, 9 (1): 6-12.
[9] McMahon H O, Gifford W E. A new low temperature gas expansion cycle[J]. Advances in Cryogenic Engineering, 1960, 5: 354-367.
[10] Kuriyama T, Hakamada H, Nakagome Y, et al. High efficienct twostage GM refrigerator with magnetic material in the liquid helium temperature region[J]. Advances in Cryogenic Engineering, 1990, 35: 1261-1269.
[11] Eckroad S. Superconducting power equipment[EB/OL]. [2012-24-12]. http://www.iass-potsdam.de/sites/default/files/files/epri_sc_technology_ watch_2011.pdf.
[12] Gifford W E, Longsworth R C. Pulse tube refrigerator[J]. Journal of Engineering for Industry, Transactions of the ASME, 1964, 86: 264- 270.
[13] Gifford W E, Kyanka G H. Reversible pulse tube refrigeration[J]. Advances in Cryogenic Engineering, 1967, 12: 619-630.
[14] Mikulin E I. Low-temperature expansion pulse tube[J]. Advances in Cryogenic Engineering, 1984, 29: 629-637.
[15] Radebaugh R, Zimmerman J, Smith D R, et al. A comparison of three types of pulse tube refrigerators: New methods for reaching 60 K[J]. Advances in Cryogenic Engineering, 1986, 31: 779-789.
[16] Zhu S L, Wu P Y, Chen Z Q. Double inlet pulse tube refrigerators: An important improvement[J]. Cryogenics, 1990, 30(6): 514-520.
[17] Jiang N, Lindemann U, Giebeler F, et al. A He-3 pulse tube cooler operating down to 1.3 K[J]. Cryogenics, 2004, 44(11): 809-816.
[18] Kanao K, Watanabe N, Kanazawa Y. A miniature pulse tube refrigerator for temperatures below 100 K[J]. Cryogenics, 1994, 34: 167-170.
[19] Nast T, Olson J, Champagne P, et al. Overview of lockheed martin cryocoolers[J]. Cryogenics, 2006, 46(2/3): 164-168.
[20] Hu J Y, Dai W, Luo E C, et al. Development of high efficiency Stirling-type pulse tube cryocoolers[J]. Cryogenics, 2010, 50(9): 603- 607.
[21] Gifford W E, Longsworth R C. Surface heat pumping[J]. Advances in Cryogenic Engineering, 1966, 11: 171-179.
[22] Storch P J, Radebaugh R. Development and experimental test of an analytical model of the orifice pulse tube refrigerator[J]. Advances in Cryogenic Engineering, 1988, 33: 851-859.
[23] Liang J, Ravex A, Rolland P. Study on pulse tube refrigeration Part 1: Thermodynamic nonsymmetry effect[J]. Cryogenics, 1996, 36(2): 87- 93.
[24] Rayleigh L. The theory of sound[M]. Dover: Dover Publications, 1896.
[25] Rott N. Thermoacoustics[J]. Advances in Applied Mechanics, 1980, 20: 135-175.
[26] Swift G W. Thermoacoustics: A unifying perspective for some engines and refrigerators[M]. Sewickley, PA: ASA Publication, 2002.
[27] Garrett S L. Shipboard electronics thermoacoustic cooler[EB/OL]. [2006- 05-01]. http://www.acs.psu.edu/thermoacoustics/refrigeration/setac.htm.
[28] Swift G W, Gardner D L, Backhaus S. Acoustic recovery of lost power in pulse tube refrigerators[J]. Journal of the Acoustical Society of America, 1999, 105(2): 711-724.
[29] 吴张华. 电驱动室温温区行波热声制冷机的数值模拟及实验研究[D]. 北京: 中国科学院理化技术研究所, 2006. Wu Zhanghua. Theoretical and experimental study of electrically driven traveling-wave thermoacoustic refrigerator in room temperature range[D]. Beijing: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 2006.
[30] Luo E C, Dai W, Hu J Y, et al. Single-stage double-acting travelingwave thermoacoustic system: China & US, PCT/CN2012/073390[P].
[31] Hu J Y, Luo E C, Zhang L M, et al. A double-acting thermoacoustic cryocooler for high temperature superconducting electric power grids[J]. Applied Energy, 2013, 112: 1166-1170.
[32] Dai W, Luo E C, Hu J Y, et al. A Heat-driven thermoacoustic cooler capable of reaching liquid nitrogen temperature[J]. Applied Physics Letters, 2005, 86(22): 224103.
[33] Hu J Y, Luo E C, Li S F, et al. Heat- driven thermoacoustic cryocooler operating at liquid hydrogen temperature with a unique coupler[J]. Journal of Applied Physics, 2008, 103(10): 104906.
[34] Hu J Y, Zhang L M, Zhu J, et al. A high-efficiency coaxial pulse tube cryocooler with 500 W cooling capacity at 80 K[J]. Cryogenics, 2014, 62: 7-10.
[35] Hu J Y, Ren J, Luo E C, et al. Study on the inertance tube and double-inlet phase shifting modes in pulse tube refrigerators[J]. Energ Convers Manage, 2011, 52(2): 1077-1085.
[36] Matthew E P, Robert W M S, Steven L G, et al. Thermoacoustic refrigeration for ice cream sales[C]//Proceedings of 6th IIR, Gustav Lorentzen Conference-Natural Working Fluids. Scotland: [S.l.], 2004.
[37] Luo E C, Dai W, Zhang Y, et al. Thermoacoustically driven refrigerator with double thermoacoustic-Stirling cycles[J]. Applied Physics Letters, 2006, 88(7): 074102.
[38] Yang L W, Thummes G. High frequency two- stage pulse tube cryocooler with base temperature below 20 K[J]. Cryogenics, 2005, 45 (2): 155-159.
[39] Tang K, Chen G B, Thummes G. 13 K thermally coupled two-stage Stirling-type pulse tube refrigerator[J]. Chinese Science Bulletin, 2005, 50(16): 1814-1816.
[40] Chen L B, Zhou Q, Jin H, et al. 386 mW/20 K single-stage Stirlingtype pulse tube cryocooler[J]. Cryogenics, 2013, 57: 195-199
[41] Zhi X Q, Han L, Dietrich M, et al. A three-stage Stirling pulse tube cryocooler reached 4.26 K with He- 4 working fluid[J]. Cryogenics, 2013, 58: 93-96.
[42] 毕延芳, 洪辉, 信赢. 高温超导电力应用的低温冷却系统及制冷机[J]. 中国科学: 技术科学, 2013, 43(10): 1101-1111. Bi Yanfang, Hong Hui, Xin Ying. The refrigerating systems and cryocoolers in HTS power grid[J]. Science China: Technologies, 2013,43(10): 1101-1111.
[43] Zia J H. A pulse tube cryocooler with 300 W refrigeration at 80 K and an operating efficiency of 19% Carnot[C]//Miller S D, Ross R G. Cryocoolers 14, Annapolis. Marylan: ICC Inc, 2007: 141-147.
[44] Radebaugh R, McDermott K M, Swift G W, et al. Development of a thermoacoustically driven orifice pulse tube refrigerator[C]// Proceedings of the Interagency Meeting on Cryocoolers. Plymouth, MA: David Taylor Research Center, 1991: 205-220.
[45] Arman B, Wollan J J, Swift G W, et al. Thermoacoustic natural gas liquefiers and recent developments[C]//Cryogenics and Refrigeration- Proceedings of ICCR. Beijing: International Academic Publishers, 2003: 123-127.
[46] Dai W, Yu G Y, Zhu S L, et al. 300 Hz thermoacoustically driven pulse tube cooler for temperature below 100 K[J]. Applied Physics Letters, 2007, 90(2): 024104.
[47] 陈燕燕, 罗二仓, 戴巍. 热声回热器流动、传热新模型及其性能的实 验表征[J]. 工程热物理学报, 2008, 29(3): 494-498. Chen Yanyan, Luo Ercang, Dai Wei. New model and measurement principle on flow and heat transfer of thermoacoustic regenerator[J]. Journal of Engineering Thermophysics, 2008, 29(3): 494-498.
[48] Tang K, Yu J, Jin T, et al. Heat transfer of laminar oscillating flow in finned heat exchanger of pulse tube refrigerator[J]. International Journal of Heat and Mass Transfer, 2014, 70: 811-818.
[49] Luo E C, Ling H, Dai W, et al. A high pressure-ratio, energy-focused thermoacoustic heat engine with a tapered resonator[J]. Chinese Science Bulletin, 2005, 50(3): 284-286.
[50] Iguchi M, Ohmi M, Maegawa K. Analysis of free oscillating flow in a U-shaped tube[J]. Bulletin of the JSME, 1982, 25: 1398-1405.
[51] 胡剑英, 陈燕燕, 罗二仓, 等. 声学压力波放大器的湍流模型及实验 验证[J]. 工程热物理学报, 2008, 29(10): 1641-1644. Hu Jianying, Chen Yanyan, Luo Ercang, et al. A simplified turbulent flow model and experimental verification for an acoustic amplifier[J]. Journal of Chinese Thermophysics Engineering, 2008, 29(10): 1641- 1644.
[52] 陈燕燕, 张宇坤,戴巍, 等. 交变流动中突变截面局部损失特性分析[J]. 工程热物理学报, 2012, 33(2): 186-190. Chen Yanyan, Zhang Yukun, Dai Wei, et al. Minor losses of oscillating flow through a sudden change area[J]. Journal of Chinese Thermophysics Engineering, 2012, 33(2): 186-190.
[53] Smith B L, Swift G W. Power dissipation and time-averaged pressure in oscillating flow through a sudden area change[J]. Journal of the Acoustical Society of America, 2003, 113(5): 2455-2463.
[54] Radebaugh R, O'Gallagher A. Regenerator operation at very high frequencies for microcryocoolers[J]. Advances in Cryogenic Engineering, 2006, 51(B): 1919-1928.
Outlines

/