[1] 陈光明, 陈国邦. 制冷与低温原理[M]. 2版. 北京: 机械工业出版社, 2009. Chen Guangming, Chen Guobang. The theory of refrigeration and cryogenics[M]. 2nd ed. Beijing: China Machine Press, 2009.
[2] 陈国邦, 汤珂. 小型低温制冷机原理[M]. 北京: 科学出版社, 2009. Chen Guobang, Tang Ke. The principle of cryogenic refrigerator[M]. Beijing: Science Press, 2009.
[3] Radebaugh R. Cryocoolers: The state of the art and recent developments[J]. Journal of Physics Condensed Matter, 2009, 21(16): 164219.
[4] Walker G. Stirling engines[M]. Oxford: Oxford University Press, 1980.
[5] 刘晓华, 纪国林, 许妙根. 斯特林制冷机中膜片弹簧的有限元分析[J]. 低温与特气, 1999(2): 28-30. Liu Xiaohua, Ji Guolin, Xu Miaogen. The finite element analysis for the Oxford flexure bearing in Stirling cryocoolers[J]. Low Temperature and Specialty Gases, 1999(2): 28-30.
[6] Davey G. Review of the Oxford cryocooler[J]. Advances in Cryogenic Engineering, 1990, 35(B): 1423-1430.
[7] Wong T E, Pan R B, Johnson A L. Novel linear flexure bearing[C]// Cryocoolers 7. New York: Plenum Press, 1992: 675-698.
[8] 朱建炳, 潘雁频. 空间制冷技术在星载红外遥感中的应用与发展[J]. 真空与低温, 2003, 9(1): 6-12. Zhu Jianbing, Pan Yanpin. Space refrigeration technology for infrared remote sensing in satellites[J]. Vacuum and Low Temperature, 2003, 9 (1): 6-12.
[9] McMahon H O, Gifford W E. A new low temperature gas expansion cycle[J]. Advances in Cryogenic Engineering, 1960, 5: 354-367.
[10] Kuriyama T, Hakamada H, Nakagome Y, et al. High efficienct twostage GM refrigerator with magnetic material in the liquid helium temperature region[J]. Advances in Cryogenic Engineering, 1990, 35: 1261-1269.
[11] Eckroad S. Superconducting power equipment[EB/OL]. [2012-24-12]. http://www.iass-potsdam.de/sites/default/files/files/epri_sc_technology_ watch_2011.pdf.
[12] Gifford W E, Longsworth R C. Pulse tube refrigerator[J]. Journal of Engineering for Industry, Transactions of the ASME, 1964, 86: 264- 270.
[13] Gifford W E, Kyanka G H. Reversible pulse tube refrigeration[J]. Advances in Cryogenic Engineering, 1967, 12: 619-630.
[14] Mikulin E I. Low-temperature expansion pulse tube[J]. Advances in Cryogenic Engineering, 1984, 29: 629-637.
[15] Radebaugh R, Zimmerman J, Smith D R, et al. A comparison of three types of pulse tube refrigerators: New methods for reaching 60 K[J]. Advances in Cryogenic Engineering, 1986, 31: 779-789.
[16] Zhu S L, Wu P Y, Chen Z Q. Double inlet pulse tube refrigerators: An important improvement[J]. Cryogenics, 1990, 30(6): 514-520.
[17] Jiang N, Lindemann U, Giebeler F, et al. A He-3 pulse tube cooler operating down to 1.3 K[J]. Cryogenics, 2004, 44(11): 809-816.
[18] Kanao K, Watanabe N, Kanazawa Y. A miniature pulse tube refrigerator for temperatures below 100 K[J]. Cryogenics, 1994, 34: 167-170.
[19] Nast T, Olson J, Champagne P, et al. Overview of lockheed martin cryocoolers[J]. Cryogenics, 2006, 46(2/3): 164-168.
[20] Hu J Y, Dai W, Luo E C, et al. Development of high efficiency Stirling-type pulse tube cryocoolers[J]. Cryogenics, 2010, 50(9): 603- 607.
[21] Gifford W E, Longsworth R C. Surface heat pumping[J]. Advances in Cryogenic Engineering, 1966, 11: 171-179.
[22] Storch P J, Radebaugh R. Development and experimental test of an analytical model of the orifice pulse tube refrigerator[J]. Advances in Cryogenic Engineering, 1988, 33: 851-859.
[23] Liang J, Ravex A, Rolland P. Study on pulse tube refrigeration Part 1: Thermodynamic nonsymmetry effect[J]. Cryogenics, 1996, 36(2): 87- 93.
[24] Rayleigh L. The theory of sound[M]. Dover: Dover Publications, 1896.
[25] Rott N. Thermoacoustics[J]. Advances in Applied Mechanics, 1980, 20: 135-175.
[26] Swift G W. Thermoacoustics: A unifying perspective for some engines and refrigerators[M]. Sewickley, PA: ASA Publication, 2002.
[27] Garrett S L. Shipboard electronics thermoacoustic cooler[EB/OL]. [2006- 05-01]. http://www.acs.psu.edu/thermoacoustics/refrigeration/setac.htm.
[28] Swift G W, Gardner D L, Backhaus S. Acoustic recovery of lost power in pulse tube refrigerators[J]. Journal of the Acoustical Society of America, 1999, 105(2): 711-724.
[29] 吴张华. 电驱动室温温区行波热声制冷机的数值模拟及实验研究[D]. 北京: 中国科学院理化技术研究所, 2006. Wu Zhanghua. Theoretical and experimental study of electrically driven traveling-wave thermoacoustic refrigerator in room temperature range[D]. Beijing: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 2006.
[30] Luo E C, Dai W, Hu J Y, et al. Single-stage double-acting travelingwave thermoacoustic system: China & US, PCT/CN2012/073390[P].
[31] Hu J Y, Luo E C, Zhang L M, et al. A double-acting thermoacoustic cryocooler for high temperature superconducting electric power grids[J]. Applied Energy, 2013, 112: 1166-1170.
[32] Dai W, Luo E C, Hu J Y, et al. A Heat-driven thermoacoustic cooler capable of reaching liquid nitrogen temperature[J]. Applied Physics Letters, 2005, 86(22): 224103.
[33] Hu J Y, Luo E C, Li S F, et al. Heat- driven thermoacoustic cryocooler operating at liquid hydrogen temperature with a unique coupler[J]. Journal of Applied Physics, 2008, 103(10): 104906.
[34] Hu J Y, Zhang L M, Zhu J, et al. A high-efficiency coaxial pulse tube cryocooler with 500 W cooling capacity at 80 K[J]. Cryogenics, 2014, 62: 7-10.
[35] Hu J Y, Ren J, Luo E C, et al. Study on the inertance tube and double-inlet phase shifting modes in pulse tube refrigerators[J]. Energ Convers Manage, 2011, 52(2): 1077-1085.
[36] Matthew E P, Robert W M S, Steven L G, et al. Thermoacoustic refrigeration for ice cream sales[C]//Proceedings of 6th IIR, Gustav Lorentzen Conference-Natural Working Fluids. Scotland: [S.l.], 2004.
[37] Luo E C, Dai W, Zhang Y, et al. Thermoacoustically driven refrigerator with double thermoacoustic-Stirling cycles[J]. Applied Physics Letters, 2006, 88(7): 074102.
[38] Yang L W, Thummes G. High frequency two- stage pulse tube cryocooler with base temperature below 20 K[J]. Cryogenics, 2005, 45 (2): 155-159.
[39] Tang K, Chen G B, Thummes G. 13 K thermally coupled two-stage Stirling-type pulse tube refrigerator[J]. Chinese Science Bulletin, 2005, 50(16): 1814-1816.
[40] Chen L B, Zhou Q, Jin H, et al. 386 mW/20 K single-stage Stirlingtype pulse tube cryocooler[J]. Cryogenics, 2013, 57: 195-199
[41] Zhi X Q, Han L, Dietrich M, et al. A three-stage Stirling pulse tube cryocooler reached 4.26 K with He- 4 working fluid[J]. Cryogenics, 2013, 58: 93-96.
[42] 毕延芳, 洪辉, 信赢. 高温超导电力应用的低温冷却系统及制冷机[J]. 中国科学: 技术科学, 2013, 43(10): 1101-1111. Bi Yanfang, Hong Hui, Xin Ying. The refrigerating systems and cryocoolers in HTS power grid[J]. Science China: Technologies, 2013,43(10): 1101-1111.
[43] Zia J H. A pulse tube cryocooler with 300 W refrigeration at 80 K and an operating efficiency of 19% Carnot[C]//Miller S D, Ross R G. Cryocoolers 14, Annapolis. Marylan: ICC Inc, 2007: 141-147.
[44] Radebaugh R, McDermott K M, Swift G W, et al. Development of a thermoacoustically driven orifice pulse tube refrigerator[C]// Proceedings of the Interagency Meeting on Cryocoolers. Plymouth, MA: David Taylor Research Center, 1991: 205-220.
[45] Arman B, Wollan J J, Swift G W, et al. Thermoacoustic natural gas liquefiers and recent developments[C]//Cryogenics and Refrigeration- Proceedings of ICCR. Beijing: International Academic Publishers, 2003: 123-127.
[46] Dai W, Yu G Y, Zhu S L, et al. 300 Hz thermoacoustically driven pulse tube cooler for temperature below 100 K[J]. Applied Physics Letters, 2007, 90(2): 024104.
[47] 陈燕燕, 罗二仓, 戴巍. 热声回热器流动、传热新模型及其性能的实 验表征[J]. 工程热物理学报, 2008, 29(3): 494-498. Chen Yanyan, Luo Ercang, Dai Wei. New model and measurement principle on flow and heat transfer of thermoacoustic regenerator[J]. Journal of Engineering Thermophysics, 2008, 29(3): 494-498.
[48] Tang K, Yu J, Jin T, et al. Heat transfer of laminar oscillating flow in finned heat exchanger of pulse tube refrigerator[J]. International Journal of Heat and Mass Transfer, 2014, 70: 811-818.
[49] Luo E C, Ling H, Dai W, et al. A high pressure-ratio, energy-focused thermoacoustic heat engine with a tapered resonator[J]. Chinese Science Bulletin, 2005, 50(3): 284-286.
[50] Iguchi M, Ohmi M, Maegawa K. Analysis of free oscillating flow in a U-shaped tube[J]. Bulletin of the JSME, 1982, 25: 1398-1405.
[51] 胡剑英, 陈燕燕, 罗二仓, 等. 声学压力波放大器的湍流模型及实验 验证[J]. 工程热物理学报, 2008, 29(10): 1641-1644. Hu Jianying, Chen Yanyan, Luo Ercang, et al. A simplified turbulent flow model and experimental verification for an acoustic amplifier[J]. Journal of Chinese Thermophysics Engineering, 2008, 29(10): 1641- 1644.
[52] 陈燕燕, 张宇坤,戴巍, 等. 交变流动中突变截面局部损失特性分析[J]. 工程热物理学报, 2012, 33(2): 186-190. Chen Yanyan, Zhang Yukun, Dai Wei, et al. Minor losses of oscillating flow through a sudden change area[J]. Journal of Chinese Thermophysics Engineering, 2012, 33(2): 186-190.
[53] Smith B L, Swift G W. Power dissipation and time-averaged pressure in oscillating flow through a sudden area change[J]. Journal of the Acoustical Society of America, 2003, 113(5): 2455-2463.
[54] Radebaugh R, O'Gallagher A. Regenerator operation at very high frequencies for microcryocoolers[J]. Advances in Cryogenic Engineering, 2006, 51(B): 1919-1928.