Special Issues

Raman spectroscopy for FeCl3-based few-layer graphene intercalation compounds

  • CHEN Runkun ,
  • CHEN Jianing
Expand
  • 1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
    2. Collaborative Innovation Center of Quantum Matter, Beijing 100190, China

Received date: 2015-01-07

  Revised date: 2015-01-29

  Online published: 2015-03-27

Abstract

This paper investigates the FeCl3- based few- layer graphene intercalation compound flakes based on the Raman spectroscopy. Different intercalated parts of the graphene flake and the corresponding doping level can be retrieved by the G band Raman mapping. The G band Raman spectrum consists of a single peak or double peaks for the bilayer and tetralayer graphenes, respectively. A surprising intrinsic G0 peak appears at the edges of the intercalated graphene, which suggests that the doped graphene is partially undoped at the edges. Furthermore for the bilayer graphene intercalation compound flake, the 2D band peak can fit with four Lorenztian peaks with different full width half maxima (FWHM). This study provides a better understanding of the property of the electrically modified graphene.

Cite this article

CHEN Runkun , CHEN Jianing . Raman spectroscopy for FeCl3-based few-layer graphene intercalation compounds[J]. Science & Technology Review, 2015 , 33(5) : 13 -17 . DOI: 10.3981/j.issn.1000-7857.2015.05.001

References

[1] Dresselhaus M S, Dresselhaus G. Intercalation compounds of graphite[J]. Advances in Physics, 2002, 51(1): 1-186.
[2] Caswell N, Solin S A. Vibrational excitations of pure FeCl3 and graphite intercalated with ferric chloride[J]. Solid State Communications, 1978, 27 (10): 961-967.
[3] Enoki T S M, Endo M. Graphite intercalation compounds and applications[M]. London: Oxford University Press, 2003.
[4] Underhill C, Leung S Y, Dresselhaus G, et al. Infrared and Raman spectroscopy of graphite-ferric chloride[J]. Solid State Communications, 1979, 29(11): 769-774.
[5] Grüneis A, Attaccalite C, Rubio A, et al. Electronic structure and electronphonon coupling of doped graphene layers in KC8[J]. Physical Review B, 2009, 79(20): 205106.
[6] Zhao W, Tan P H, Liu J, et al. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of fermi level, layer by layer decoupling, and stability[J]. Journal of the American Chemical Society, 2011, 133(15): 5941-5946.
[7] Liu C, Yu Z, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters, 2010, 10(12): 4863-4868.
[8] Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4): 217-224.
[9] Stankovich S, Dikin D A, Dommett G H, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286.
[10] Lin Y M, Dimitrakopoulos C, Jenkins K A, et al. 100-GHz transistors from wafer-scale epitaxial graphene[J]. Science, 2010, 327(5966): 662-662.
[11] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[12] Khrapach I, Withers F, Bointon T H, et al. Novel highly conductive and transparent graphene-based conductors[J]. Advanced Materials, 2012, 24(21): 2844-2849.
[13] Das A, Pisana S, Chakraborty B, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor[J]. Nature Nanotechnology, 2008, 3(4): 210-215.
[14] Chen J H, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2[J]. Nature Nanotechnology, 2008, 3 (4): 206-209.
[15] Ni Z, Wang Y, Yu T, et al. Raman spectroscopy and imaging of graphene[J]. Nano Research, 2008, 1(4): 273-291.
[16] Dresselhaus M, Malard L, Pimenta M, et al. Raman spectroscopy in graphene[J]. Physics Reports, 2009, 473(5): 51-87.
[17] Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology, 2013, 8 (4): 235-246.
[18] Ferrari A C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Communications, 2007, 143(1): 47-57.
[19] Ferrari A, Meyer J, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 187401.
[20] Reich S, Thomsen C. Raman spectroscopy of graphite[J]. Philosophical transactions of the royal society of London series A: Mathematical, Physical and Engineering Sciences, 2004, 362(1824): 2271-2288.
[21] ZhanD,SunL,NiZH,etal.FeCl3-basedfew-layergraphene intercalation compounds: Single linear dispersion electronic band structure and strong charge transfer doping[J]. Advanced Functional Materials, 2010, 20(20): 3504-3509.
[22] Chan C, Ho K, Kamitakahara W. Zone-center phonon frequencies for graphite and graphite intercalation compounds: Charge-transfer and intercalate-coupling effects[J]. Physical Review B, 1987, 36(6): 3499.
[23] Casiraghi C, Hartschuh A, Qian H, et al. Raman spectroscopy of graphene edges[J]. Nano Letters, 2009, 9(4): 1433-1441.
[24] Hong J, Park M K, Lee E J, et al. Origin of new broad Raman D and G peaks in annealed graphene[J]. Scientific Reports, 2013, 3: 2700..
[25] Cançado L G, Pimenta M A, Neves B R A, et al. Influence of the atomic structure on the Raman spectra of graphite edges[J]. Physical Review Letters, 2004, 93(24): 247401.
[26] Mohiuddin T, Lombardo A, Nair R, et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation[J]. Physical Review B, 2009, 79(20): 205433.
[27] Kim N, Kim K S, Jung N, et al. Synthesis and electrical characterization of magnetic bilayer graphene intercalate[J]. Nano Letters, 2011, 11(2): 860-865.
[28] Metz W, Siemsglüss L. Messungen und berechnungen zur kinetik der einlagerung von FeCl3 in graphit[J]. Carbon, 1978, 16(4): 225-229.
[29] Barker J, Croft R. Studies on the formation of graphite-ferric chloride complexes: Kinetics of formation[J]. Australian Journal of Chemistry, 1953, 6(3): 302-314.
[30] Graf D, Molitor F, Ensslin K, et al. Spatially resolved Raman spectroscopy of single-and few-layer graphene[J]. Nano Letters, 2007, 7(2): 238-242.
Outlines

/