[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[2] Bunch J S, van der Zande A M, Verbridge S S, et al. Electromechanical resonators from graphene sheets[J]. Science, 2007, 315(5811): 490-493.
[3] Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J].ReviewsofModernPhysics,2009,81(1):109-162.
[4] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9-10): 351-355.
[5] Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules[J]. Angewandte Chemie-International Edition, 2009, 48(26): 4785-4787.
[6] Wu L, Chu H S, Koh W S, et al. Highly sensitive graphene biosensors based on surface plasmon resonance[J]. Optics Express, 2010, 18(14): 14395-14400.
[7] Zhu X, Shi L, Schmidt M S, et al. Enhanced light-matter interactions in graphene-covered gold nanovoid arrays[J]. Nano Letters, 2013, 13 (10): 4690-4696.
[8] Xu W, Ling X, Xiao J, et al. Surface enhanced raman spectroscopy on a flat graphene surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24): 9281-9286.
[9] Xu W, Mao N, Zhang J. Graphene: A platform for surface-enhanced raman spectroscopy[J]. Small, 2013, 9(8): 1206-1224.
[10] Zhu J, Liu Q H, Lin T. Manipulating light absorption of graphene using plasmonic nanoparticles[J]. Nanoscale, 2013, 5(17): 7785-7789.
[11] Ling X, Xie L, Fang Y, et al. Can graphene be used as a substrate for raman enhancement?[J]. Nano Letters, 2010, 10(2): 553-561.
[12] Hao Q, Wang B, Bossard J A, et al. Surface-enhanced raman scattering study on graphene-coated metallic nanostructure substrates[J]. Journal of Physical Chemistry C, 2012, 116(13): 7249-7254.
[13] Nelson F J, Kamineni V K, Zhang T, et al. Optical properties of largearea polycrystalline chemical vapor deposited graphene by spectroscopic ellipsometry[J]. Applied Physics Letters, 2010, 97(25): 253110.
[14] Zhang L, Jiang C, Zhang Z. Graphene oxide embedded sandwich nanostructures for enhanced raman readout and their applications in pesticide monitoring[J]. Nanoscale, 2013, 5(9): 3773-3779.
[15] Wang P, Liang O, Zhang W, et al. Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection[J]. Advanced Materials, 2013, 25(35): 4918-4924.
[16] Lim D K, Jeon K S, Kim H M, et al. Nanogap-engineerable ramanactive nanodumbbells for single-molecule detection[J]. Nature Materials, 2010, 9(1): 60-67.
[17] Lee J, Hua B, Park S, et al. Tailoring surface plasmons of highdensity gold nanostar assemblies on metal films for surface-enhanced raman spectroscopy[J]. Nanoscale, 2014, 6(1): 616-623.
[18] Osberg K D, Rycenga M, Harris N, et al. Dispersible gold nanorod dimers with sub-5 nm gaps as local amplifiers for surface-enhanced raman scattering[J]. Nano Letters, 2012, 12(7): 3828-3832.
[19] Szunerits S, Boukherroub R. Sensing using localised surface plasmon resonance sensors[J]. Chemical Communications, 2012, 48(72): 8999-9010.
[20] Du Y, Zhao Y, Qu Y, et al. Enhanced light-matter interaction of graphene-gold nanoparticles hybrid films for high-performance sers detection[J]. Journal of Materials Chemistry C, 2014, 2: 4683-4691.
[21] Yan H, Li X, Chandra B, et al. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology, 2012, 7(5): 330-334.
[22] Fang Z, Wang Y, Schather A E, et al. Active tunable absorption enhancement with graphene nanodisk arrays[J]. Nano Letters, 2014, 14 (1): 299-304.
[23] Brar V W, Jang M S, Sherrott M, et al. Highly confined tunable midinfrared plasmonics in graphene nanoresonators[J]. Nano Letters, 2013, 8(9): 7806-7813.
[24] Fei Z, Rodin A S, Andreev G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 2012, 487 (7405): 82-85.
[25] Chen J, Badioli M, Alonso-Gonzalez P, et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405): 77-81.
[26] Vasic B, Isic G, Gajic R. Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies[J]. Journal of Applied Physics, 2013, 113(1): 013110.
[27] Xu W, Xiao J, Chen Y, et al. Graphene-veiled gold substrate for surface-enhanced raman spectroscopy[J]. Advanced Materials, 2013, 25(6): 928-933.
[28] Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314.
[29] Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8): 574-578.
[30] Frank O, Vejpravova J, Holy V, et al. Interaction between graphene and copper substrate: The role of lattice orientation[J]. Carbon, 2014, 68: 440-451.
[31] Hao Y, Bharathi M S, Wang L, et al. The role of surface oxygen in the growth of large single-crystal graphene on copper[J]. Science, 2013, 342(6159): 720-723.
[32] Fan W, Lee Y H, Pedireddy S, et al. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surfaceenhanced raman scattering (SERS) sensing[J]. Nanoscale, 2014, 6(9): 4843-4851.
[33] Zhou H, Qiu C, Liu Z, et al. Thickness-dependent morphologies of gold on n-layer graphenes[J]. Journal of the American Chemical Society, 2010, 132(3): 944-946.
[34] Zhou H, Yu F, Chen M, et al. The transformation of a gold film on few-layer graphene to produce either hexagonal or triangular nanoparticles during annealing[J]. Carbon, 2013, 52: 379-387.
[35] Zhou H, Yu F, Yang H, et al. High-throughput thickness determination of n-layer graphenes via gold deposition[J]. Chemical Physics Letters, 2011, 518: 76-80.
[36] Qiu C, Zhou H, Cao B, et al. Raman spectroscopy of morphologycontrolled deposition of Au on graphene[J]. Carbon, 2013, 59: 487-494.
[37] Zhou H, Qiu C, Yu F, et al. Thickness-dependent morphologies and surface-enhanced raman scattering of Ag deposited on n-layer graphenes[J]. Journal of Physical Chemistry C, 2011, 115(23): 11348-11354.
[38] Zhao Y, Chen G, Du Y, et al. Plasmonic-enhanced raman scattering of graphene on growth substrate and its application in sers[J]. Nanoscale, 2014, 6(22): 13754-13760.
[39] 刘金养. 石墨烯及其复合结构的设计、制备和性能研究[D]. 合肥:中 国科学技术大学, 2013. Liu Jinyang. Design, preparation and properties of graphene and graphene composite structures[D]. Hefei: University of Science and Technology of China, 2013.
[40] Li X, Choy W C H, Ren X, et al. Highly intensified surface enhanced raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system[J]. Advanced Functional Materials, 2014, 24(21): 3114-3122.
[41] Zhao Y, Li X, Du Y, et al. Strong light-matter interactions in subnanometer gaps defined by monolayer graphene: Toward highly sensitive sers substrates[J]. Nanoscale, 2014, 6(19): 11112-11120.
[42] Zhao Y, Zeng W, Tao Z, et al. Highly sensitive surface-enhanced raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids[J]. Chemical Communications, 2015, 51(5): 866-869.
[43] GarciadeAbajoFJG.Grapheneplasmonics:Challengesand opportunities[J]. ACS Photonics, 2014, 1(3): 135-152.
[44] KoppensFHL,ChangDE,ThongrattanasiriS,etal.Graphene plasmonics: A platform for strong light-matter interactions[J]. Optics & Photonics News, 2011, 22(12): 36-36.
[45] Zhan T R, Zhao F Y, Hu X H, et al. Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies[J]. Physical Review B, 2012, 86(16): 165416.
[46] Gao W, Shu J, Qiu C, et al. Excitation of plasmonic waves in graphene by guided-mode resonances[J]. Acs Nano, 2012, 6(9): 7806-7813.
[47] Zhao Y, Hu X, Chen G, et al. Infrared biosensors based on graphene plasmonics: Modeling[J]. Physical Chemistry Chemical Physics, 2013, 15(40): 17118-17125.
[48] Zhao Y, Chen G, Tao Z, et al. High Q-factor plasmonic resonators in continuous graphene excited by insulator-covered silicon gratings[J]. RSC Advances, 2014, 4: 26535-26542.