Special Issues

Recent advances in plasmonic sensing of graphene based hybrid films

  • ZHAO Yuan ,
  • DU Yuanxin ,
  • CHEN Guanxiong ,
  • TAO Zhuchen ,
  • CHENG Tao ,
  • ZHU Yanwu
Expand
  • 1. CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
    2. Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230026, China

Received date: 2015-01-07

  Revised date: 2015-02-02

  Online published: 2015-03-27

Abstract

The graphene, a single layer of carbon atoms in a hexagonal configuration, enjoys high carrier mobility, good biocompatibility and chemical stability. This paper briefly reviews the recent research progresses in the surface-enhanced Raman scattering (SERS) of graphene-metal nanoparticles (NPs) hybrid films, the excitation of graphene plasmons and the performance in sensing. In the visible region, the coupling between the graphene and the metal NPs allows the hybrid films to have enhanced absorption and much stronger electric field enhancement, and thus they can be used as highly sensitive SERS substrates. In the midinfrared region, the graphene plasmons can be excited by directly fabricating the graphene or fabricating the dielectric substrates with the help of guided-mode resonances, making them promising in refractive index sensing. In addition, the opportunities and challenges in this area are discussed.

Cite this article

ZHAO Yuan , DU Yuanxin , CHEN Guanxiong , TAO Zhuchen , CHENG Tao , ZHU Yanwu . Recent advances in plasmonic sensing of graphene based hybrid films[J]. Science & Technology Review, 2015 , 33(5) : 18 -25 . DOI: 10.3981/j.issn.1000-7857.2015.05.002

References

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[2] Bunch J S, van der Zande A M, Verbridge S S, et al. Electromechanical resonators from graphene sheets[J]. Science, 2007, 315(5811): 490-493.
[3] Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J].ReviewsofModernPhysics,2009,81(1):109-162.
[4] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9-10): 351-355.
[5] Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules[J]. Angewandte Chemie-International Edition, 2009, 48(26): 4785-4787.
[6] Wu L, Chu H S, Koh W S, et al. Highly sensitive graphene biosensors based on surface plasmon resonance[J]. Optics Express, 2010, 18(14): 14395-14400.
[7] Zhu X, Shi L, Schmidt M S, et al. Enhanced light-matter interactions in graphene-covered gold nanovoid arrays[J]. Nano Letters, 2013, 13 (10): 4690-4696.
[8] Xu W, Ling X, Xiao J, et al. Surface enhanced raman spectroscopy on a flat graphene surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24): 9281-9286.
[9] Xu W, Mao N, Zhang J. Graphene: A platform for surface-enhanced raman spectroscopy[J]. Small, 2013, 9(8): 1206-1224.
[10] Zhu J, Liu Q H, Lin T. Manipulating light absorption of graphene using plasmonic nanoparticles[J]. Nanoscale, 2013, 5(17): 7785-7789.
[11] Ling X, Xie L, Fang Y, et al. Can graphene be used as a substrate for raman enhancement?[J]. Nano Letters, 2010, 10(2): 553-561.
[12] Hao Q, Wang B, Bossard J A, et al. Surface-enhanced raman scattering study on graphene-coated metallic nanostructure substrates[J]. Journal of Physical Chemistry C, 2012, 116(13): 7249-7254.
[13] Nelson F J, Kamineni V K, Zhang T, et al. Optical properties of largearea polycrystalline chemical vapor deposited graphene by spectroscopic ellipsometry[J]. Applied Physics Letters, 2010, 97(25): 253110.
[14] Zhang L, Jiang C, Zhang Z. Graphene oxide embedded sandwich nanostructures for enhanced raman readout and their applications in pesticide monitoring[J]. Nanoscale, 2013, 5(9): 3773-3779.
[15] Wang P, Liang O, Zhang W, et al. Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection[J]. Advanced Materials, 2013, 25(35): 4918-4924.
[16] Lim D K, Jeon K S, Kim H M, et al. Nanogap-engineerable ramanactive nanodumbbells for single-molecule detection[J]. Nature Materials, 2010, 9(1): 60-67.
[17] Lee J, Hua B, Park S, et al. Tailoring surface plasmons of highdensity gold nanostar assemblies on metal films for surface-enhanced raman spectroscopy[J]. Nanoscale, 2014, 6(1): 616-623.
[18] Osberg K D, Rycenga M, Harris N, et al. Dispersible gold nanorod dimers with sub-5 nm gaps as local amplifiers for surface-enhanced raman scattering[J]. Nano Letters, 2012, 12(7): 3828-3832.
[19] Szunerits S, Boukherroub R. Sensing using localised surface plasmon resonance sensors[J]. Chemical Communications, 2012, 48(72): 8999-9010.
[20] Du Y, Zhao Y, Qu Y, et al. Enhanced light-matter interaction of graphene-gold nanoparticles hybrid films for high-performance sers detection[J]. Journal of Materials Chemistry C, 2014, 2: 4683-4691.
[21] Yan H, Li X, Chandra B, et al. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology, 2012, 7(5): 330-334.
[22] Fang Z, Wang Y, Schather A E, et al. Active tunable absorption enhancement with graphene nanodisk arrays[J]. Nano Letters, 2014, 14 (1): 299-304.
[23] Brar V W, Jang M S, Sherrott M, et al. Highly confined tunable midinfrared plasmonics in graphene nanoresonators[J]. Nano Letters, 2013, 8(9): 7806-7813.
[24] Fei Z, Rodin A S, Andreev G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 2012, 487 (7405): 82-85.
[25] Chen J, Badioli M, Alonso-Gonzalez P, et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405): 77-81.
[26] Vasic B, Isic G, Gajic R. Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies[J]. Journal of Applied Physics, 2013, 113(1): 013110.
[27] Xu W, Xiao J, Chen Y, et al. Graphene-veiled gold substrate for surface-enhanced raman spectroscopy[J]. Advanced Materials, 2013, 25(6): 928-933.
[28] Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314.
[29] Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8): 574-578.
[30] Frank O, Vejpravova J, Holy V, et al. Interaction between graphene and copper substrate: The role of lattice orientation[J]. Carbon, 2014, 68: 440-451.
[31] Hao Y, Bharathi M S, Wang L, et al. The role of surface oxygen in the growth of large single-crystal graphene on copper[J]. Science, 2013, 342(6159): 720-723.
[32] Fan W, Lee Y H, Pedireddy S, et al. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surfaceenhanced raman scattering (SERS) sensing[J]. Nanoscale, 2014, 6(9): 4843-4851.
[33] Zhou H, Qiu C, Liu Z, et al. Thickness-dependent morphologies of gold on n-layer graphenes[J]. Journal of the American Chemical Society, 2010, 132(3): 944-946.
[34] Zhou H, Yu F, Chen M, et al. The transformation of a gold film on few-layer graphene to produce either hexagonal or triangular nanoparticles during annealing[J]. Carbon, 2013, 52: 379-387.
[35] Zhou H, Yu F, Yang H, et al. High-throughput thickness determination of n-layer graphenes via gold deposition[J]. Chemical Physics Letters, 2011, 518: 76-80.
[36] Qiu C, Zhou H, Cao B, et al. Raman spectroscopy of morphologycontrolled deposition of Au on graphene[J]. Carbon, 2013, 59: 487-494.
[37] Zhou H, Qiu C, Yu F, et al. Thickness-dependent morphologies and surface-enhanced raman scattering of Ag deposited on n-layer graphenes[J]. Journal of Physical Chemistry C, 2011, 115(23): 11348-11354.
[38] Zhao Y, Chen G, Du Y, et al. Plasmonic-enhanced raman scattering of graphene on growth substrate and its application in sers[J]. Nanoscale, 2014, 6(22): 13754-13760.
[39] 刘金养. 石墨烯及其复合结构的设计、制备和性能研究[D]. 合肥:中 国科学技术大学, 2013. Liu Jinyang. Design, preparation and properties of graphene and graphene composite structures[D]. Hefei: University of Science and Technology of China, 2013.
[40] Li X, Choy W C H, Ren X, et al. Highly intensified surface enhanced raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system[J]. Advanced Functional Materials, 2014, 24(21): 3114-3122.
[41] Zhao Y, Li X, Du Y, et al. Strong light-matter interactions in subnanometer gaps defined by monolayer graphene: Toward highly sensitive sers substrates[J]. Nanoscale, 2014, 6(19): 11112-11120.
[42] Zhao Y, Zeng W, Tao Z, et al. Highly sensitive surface-enhanced raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids[J]. Chemical Communications, 2015, 51(5): 866-869.
[43] GarciadeAbajoFJG.Grapheneplasmonics:Challengesand opportunities[J]. ACS Photonics, 2014, 1(3): 135-152.
[44] KoppensFHL,ChangDE,ThongrattanasiriS,etal.Graphene plasmonics: A platform for strong light-matter interactions[J]. Optics & Photonics News, 2011, 22(12): 36-36.
[45] Zhan T R, Zhao F Y, Hu X H, et al. Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies[J]. Physical Review B, 2012, 86(16): 165416.
[46] Gao W, Shu J, Qiu C, et al. Excitation of plasmonic waves in graphene by guided-mode resonances[J]. Acs Nano, 2012, 6(9): 7806-7813.
[47] Zhao Y, Hu X, Chen G, et al. Infrared biosensors based on graphene plasmonics: Modeling[J]. Physical Chemistry Chemical Physics, 2013, 15(40): 17118-17125.
[48] Zhao Y, Chen G, Tao Z, et al. High Q-factor plasmonic resonators in continuous graphene excited by insulator-covered silicon gratings[J]. RSC Advances, 2014, 4: 26535-26542.
Outlines

/