Special Issues

Applications of graphene in optoelectronic devices

  • CHEN Wei ,
  • LI Fushan ,
  • GUO Tailiang
Expand
  • College of Physics and Information Engineering, Fuzhou University, Fuzhou 350002, China

Received date: 2015-01-07

  Revised date: 2015-02-01

  Online published: 2015-03-27

Abstract

The graphene is an allotrope of carbon, a 2D thin film material with unique optical, electrical and mechanical properties. Recently, the optoelectronic devices using the graphene are extensively investigated. This paper reviews the applications of the graphene in solar cells, organic light-emitting diodes, and field emission devices. The graphene can serve as the flexible electrode for solar cells and organic light-emitting diodes due to its excellent conductivity and mechanical properties. The graphene can be used as an electron acceptor for organic solar cells for the honeycomb graphene can form a large donor acceptor interface with the organic polymer material, which might improve the exciton's diffusion rate and the electron's mobility. The graphene has a high charge mobility and sharp edges, and is endowed with the great field enhancement factor and can be used as electron conductive and electron emission materials.

Cite this article

CHEN Wei , LI Fushan , GUO Tailiang . Applications of graphene in optoelectronic devices[J]. Science & Technology Review, 2015 , 33(5) : 34 -38 . DOI: 10.3981/j.issn.1000-7857.2015.05.004

References

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669.
[2] Ferrari A C, Bonaccorso F, Falko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems[J/OL]. Nanoscale, 2014[2014-12-30]. http://pubs.rsc.org/en/ content/articlelanding/2014/nr/c4nr01600a.
[3] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[4] Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-158.
[5] 朱宏伟, 徐志平, 谢丹, 等. 石墨烯——结构、制备方法与性能表征[M]. 北京: 清华大学出版社, 2011. Zhu Hongwei, Xu Zhiping, Xie Dan, et al. Graphene-structure, preparation methods and characterization[M]. Beijing: Tsinghua University Press, 2011.
[6] 邹鹏, 黄德欢. 石墨烯及其应用[J]. 科学, 2014, 66(1): 29-32. Zou Peng, Huang Dehuan. Graphene and its applications[J]. Science, 2014, 66(1): 29-32.
[7] Morozov S V, Novoselov K S, Katsnelson M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters, 2008, 100(1): 016602.
[8] Chen J H, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2[J]. Nature Nanotechnology, 2008, 3 (4): 206-209.
[9] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320: 1308-1308.
[10] Novoselov K S A, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438: 197-200.
[11] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9): 351-355.
[12] Bi H, Huang F, Liang J, et al. Transparent conductive graphene films synthesized by ambient pressure chemical vapor deposition used as the front electrode of CdTe solar cells[J]. Advanced Materials, 2011, 23 (28): 3202-3206.
[13] Kasry A, Kuroda M A, Martyna G J, et al. Chemical doping of largearea stacked graphene films for use as transparent, conducting electrodes[J]. ACS Nano, 2010, 4(7): 3839-3844.
[14] Lee W H, Suk J W, Lee J, et al. Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic[J]. ACS Nano, 2012, 6(2): 1284-1290.
[15] Zhang H, Lü X, Li Y, et al. P25-graphene composite as a high performance photocatalyst[J]. ACS Nano, 2009, 4(1): 380-386.
[16] Kim S R, Parvez M K, Chhowalla M. UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells[J]. Chemical Physics Letters, 2009, 483(1): 124-127.
[17] Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letters, 2008, 8(1): 323-327.
[18] Hong W, Xu Y, Lu G, et al. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells[J]. Electrochemistry Communications, 2008, 10(10): 1555-1558.
[19] Wang Y, Chen X, Zhong Y, et al. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices[J]. Applied Physics Letters, 2009, 95(6): 063302.
[20] Liu Z, Li J, Sun Z H, et al. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells[J]. ACS Nano, 2011, 6(1): 810-818.
[21] Park H, Howden R M, Barr M C, et al. Organic solar cells with graphene electrodes and vapor printed poly (3, 4-ethylenedioxythiophene) as the hole transporting layers[J]. ACS Nano, 2012, 6(7): 6370-6377.
[22] Li S S, Tu K H, Lin C C, et al. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells[J]. ACS Nano, 2010, 4(6): 3169-3174.
[23] Yin B, Liu Q, Yang L, et al. Buffer layer of PEDOT: PSS/graphene composite for polymer solar cells[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(3): 1934-1938.
[24] Liu J, Xue Y, Gao Y, et al. Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells[J]. Advanced Materials, 2012, 24(17): 2228-2233.
[25] Liu Q, Liu Z, Zhang X, et al. Organic photovoltaic cells based on an acceptor of soluble graphene[J]. Applied Physics Letters, 2008, 92 (22): 223303.
[26] Guo C X, Yang H B, Sheng Z M, et al. Layered graphene/quantum dots for photovoltaic devices[J]. Angewandte Chemie International Edition, 2010, 49(17): 3014-3017.
[27] Liu Z, Liu Q, Huang Y, et al. Organic photovoltaic devices based on a novel acceptor material: Graphene[J]. Advanced Materials, 2008, 20 (20): 3924-3930.
[28] Yu D, Park K, Durstock M, et al. Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices[J]. The Journal of Physical Chemistry Letters, 2011, 2(10): 1113-1118.
[29] Miao X, Tongay S, Petterson M K, et al. High efficiency graphene solar cells by chemical doping[J]. Nano Letters, 2012, 12(6): 2745-2750.
[30] Wang J T W, Ball J M, Barea E M, et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells[J]. Nano Letters, 2013, 14(2): 724-730.
[31] Yang H B, Dong Y Q, Wang X, et al. Cesium carbonate functionalized graphene quantum dots as stable electron-selective layer for improvement of inverted polymer solar cells[J]. ACS Applied Materials & Interfaces, 2014, 6(2): 1092-1099.
[32] Yang H B, Dong Y Q, Wang X, et al. Graphene quantum dotsincorporated cathode buffer for improvement of inverted polymer solar cells[J]. Solar Energy Materials and Solar Cells, 2013, 117: 214-218.
[33] Gao P, Ding K, Wang Y, et al. Crystalline Si/graphene quantum dots heterojunction solar cells[J]. The Journal of Physical Chemistry C, 2014, 118(10): 5164-5171.
[34] Li Y, Hu Y, Zhao Y, et al. An electrochemical avenue to greenluminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Advanced Materials, 2011, 23(6): 776-780.
[35] Kim J K, Park M J, Kim S J, et al. Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells[J]. ACS Nano, 2013, 7(8): 7207-7212.
[36] Li F, Kou L, Chen W, et al. Enhancing the short-circuit current and power conversion efficiency of polymer solar cells with graphene quantum dots derived from double-walled carbon nanotubes[J]. NPG Asia Materials, 2013, 5(8): e60.
[37] 祝晓钊. 有机光电器件的界面调控与修饰[D]. 苏州: 苏州大学, 2013. Zhu Xiaozhao. Interface control and modification of organic optoelectronic devices[D]. Suzhou: Suzhou University, 2013.
[38] Wu J, Agrawal M, Becerril H A, et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes[J]. ACS Nano, 2009, 4(1): 43-48.
[39] Meyer J, Kidambi P R, Bayer B C, et al. Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes[J/OL]. Scientific Reports, 2014[2014-12-29]. http://www.nature.com/srep/2014/140620/ srep05380/full /srep05380.html?WT.ec_id=SREP-639-20140624.
[40] 吴晓晓, 李福山, 吴薇, 等. 基于石墨烯/PEDOT:PSS叠层薄膜的柔 性OLED器件[J]. 发光学报, 2014, 35(4): 486-490. Wu Xiaoxiao, Li Fushan, Wu Wei, et al. Flexible organic light emitting diodes based on double-layered graphene/PEDOT: PSS conductive film[J]. Chinese Journal of Luminescence, 2014, 35(4): 486-490.
[41] Li F, Lin Z, Zhang B, et al. Fabrication of flexible conductive graphene/Ag/Al-doped zinc oxide multilayer films for application in flexible organic light-emitting diodes[J]. Organic Electronics, 2013, 14 (9): 2139-2143.
[42] 郭颂, 杜晓刚,刘晓云, 等. 氧化石墨烯作为共蒸镀掺杂材料在 OLED中的应用[J]. 发光学报, 2013, 34(5): 595-599. Guo Song, Du Xiaogang, Liu Xiaoyun, et al. Graphene oxide as doping material for assembling OLEDs via thermal co-evaporation with NPB and Alq3[J]. Organic Electronics, 2013, 34(5): 595-599.
[43] Zhai T, Li L, Ma Y, et al. One-dimensional inorganic nanostructures: Synthesis, field-emission and photodetection[J]. Chemical Society Reviews, 2011, 40(5): 2986-3004.
[44] Ding J, Yan X, Li J, et al. Enhancement of field emission and photoluminescence properties of graphene-SnO2 composite nanostructures[J]. ACS Applied Materials & Interfaces, 2011, 3(11): 4299-4305.
[45] 李智军, 张晖, 薛河. 石墨烯纳米片及其场发射性能研究[J]. 化工新 型材料, 2010, 37(4): 1-3. Li Zhijun, Zhang Hui, Xue He. Graphene nanoflak (GNFs) and their electron emission[J]. New Chemical Materials, 2010, 37(4): 1-3.
[46] Deng J H, Cheng L, Wang F J, et al. High current density and longtime stable field electron transfer from large-area densely arrayed graphene nanosheet-carbon nanotube hybrids[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21558-21566.
[47] Sharma H, Agarwal D C, Sharma M, et al. Structure-modified stress dynamics and wetting characteristics of carbon nanotubes and multilayer graphene for electron field emission investigations[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12531-12540.
[48] Wu C, Li F, Zhang Y, et al. Enhanced field emission performance of tetrapod-liked zinc oxide nanoneedles by coating with graphene oxide sheets[J]. Current Nano Science, 2012, 8(1): 23-25.
[49] Wu C, Li F, Zhang Y, et al. A surface-conducted field emission device with suspended graphene cathodes[J]. Applied Surface Science, 2013, 273: 432-436.
Outlines

/