[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669.
[2] Ferrari A C, Bonaccorso F, Falko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems[J/OL]. Nanoscale, 2014[2014-12-30]. http://pubs.rsc.org/en/ content/articlelanding/2014/nr/c4nr01600a.
[3] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[4] Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-158.
[5] 朱宏伟, 徐志平, 谢丹, 等. 石墨烯——结构、制备方法与性能表征[M]. 北京: 清华大学出版社, 2011. Zhu Hongwei, Xu Zhiping, Xie Dan, et al. Graphene-structure, preparation methods and characterization[M]. Beijing: Tsinghua University Press, 2011.
[6] 邹鹏, 黄德欢. 石墨烯及其应用[J]. 科学, 2014, 66(1): 29-32. Zou Peng, Huang Dehuan. Graphene and its applications[J]. Science, 2014, 66(1): 29-32.
[7] Morozov S V, Novoselov K S, Katsnelson M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters, 2008, 100(1): 016602.
[8] Chen J H, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2[J]. Nature Nanotechnology, 2008, 3 (4): 206-209.
[9] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320: 1308-1308.
[10] Novoselov K S A, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438: 197-200.
[11] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9): 351-355.
[12] Bi H, Huang F, Liang J, et al. Transparent conductive graphene films synthesized by ambient pressure chemical vapor deposition used as the front electrode of CdTe solar cells[J]. Advanced Materials, 2011, 23 (28): 3202-3206.
[13] Kasry A, Kuroda M A, Martyna G J, et al. Chemical doping of largearea stacked graphene films for use as transparent, conducting electrodes[J]. ACS Nano, 2010, 4(7): 3839-3844.
[14] Lee W H, Suk J W, Lee J, et al. Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic[J]. ACS Nano, 2012, 6(2): 1284-1290.
[15] Zhang H, Lü X, Li Y, et al. P25-graphene composite as a high performance photocatalyst[J]. ACS Nano, 2009, 4(1): 380-386.
[16] Kim S R, Parvez M K, Chhowalla M. UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells[J]. Chemical Physics Letters, 2009, 483(1): 124-127.
[17] Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letters, 2008, 8(1): 323-327.
[18] Hong W, Xu Y, Lu G, et al. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells[J]. Electrochemistry Communications, 2008, 10(10): 1555-1558.
[19] Wang Y, Chen X, Zhong Y, et al. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices[J]. Applied Physics Letters, 2009, 95(6): 063302.
[20] Liu Z, Li J, Sun Z H, et al. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells[J]. ACS Nano, 2011, 6(1): 810-818.
[21] Park H, Howden R M, Barr M C, et al. Organic solar cells with graphene electrodes and vapor printed poly (3, 4-ethylenedioxythiophene) as the hole transporting layers[J]. ACS Nano, 2012, 6(7): 6370-6377.
[22] Li S S, Tu K H, Lin C C, et al. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells[J]. ACS Nano, 2010, 4(6): 3169-3174.
[23] Yin B, Liu Q, Yang L, et al. Buffer layer of PEDOT: PSS/graphene composite for polymer solar cells[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(3): 1934-1938.
[24] Liu J, Xue Y, Gao Y, et al. Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells[J]. Advanced Materials, 2012, 24(17): 2228-2233.
[25] Liu Q, Liu Z, Zhang X, et al. Organic photovoltaic cells based on an acceptor of soluble graphene[J]. Applied Physics Letters, 2008, 92 (22): 223303.
[26] Guo C X, Yang H B, Sheng Z M, et al. Layered graphene/quantum dots for photovoltaic devices[J]. Angewandte Chemie International Edition, 2010, 49(17): 3014-3017.
[27] Liu Z, Liu Q, Huang Y, et al. Organic photovoltaic devices based on a novel acceptor material: Graphene[J]. Advanced Materials, 2008, 20 (20): 3924-3930.
[28] Yu D, Park K, Durstock M, et al. Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices[J]. The Journal of Physical Chemistry Letters, 2011, 2(10): 1113-1118.
[29] Miao X, Tongay S, Petterson M K, et al. High efficiency graphene solar cells by chemical doping[J]. Nano Letters, 2012, 12(6): 2745-2750.
[30] Wang J T W, Ball J M, Barea E M, et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells[J]. Nano Letters, 2013, 14(2): 724-730.
[31] Yang H B, Dong Y Q, Wang X, et al. Cesium carbonate functionalized graphene quantum dots as stable electron-selective layer for improvement of inverted polymer solar cells[J]. ACS Applied Materials & Interfaces, 2014, 6(2): 1092-1099.
[32] Yang H B, Dong Y Q, Wang X, et al. Graphene quantum dotsincorporated cathode buffer for improvement of inverted polymer solar cells[J]. Solar Energy Materials and Solar Cells, 2013, 117: 214-218.
[33] Gao P, Ding K, Wang Y, et al. Crystalline Si/graphene quantum dots heterojunction solar cells[J]. The Journal of Physical Chemistry C, 2014, 118(10): 5164-5171.
[34] Li Y, Hu Y, Zhao Y, et al. An electrochemical avenue to greenluminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Advanced Materials, 2011, 23(6): 776-780.
[35] Kim J K, Park M J, Kim S J, et al. Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells[J]. ACS Nano, 2013, 7(8): 7207-7212.
[36] Li F, Kou L, Chen W, et al. Enhancing the short-circuit current and power conversion efficiency of polymer solar cells with graphene quantum dots derived from double-walled carbon nanotubes[J]. NPG Asia Materials, 2013, 5(8): e60.
[37] 祝晓钊. 有机光电器件的界面调控与修饰[D]. 苏州: 苏州大学, 2013. Zhu Xiaozhao. Interface control and modification of organic optoelectronic devices[D]. Suzhou: Suzhou University, 2013.
[38] Wu J, Agrawal M, Becerril H A, et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes[J]. ACS Nano, 2009, 4(1): 43-48.
[39] Meyer J, Kidambi P R, Bayer B C, et al. Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes[J/OL]. Scientific Reports, 2014[2014-12-29]. http://www.nature.com/srep/2014/140620/ srep05380/full /srep05380.html?WT.ec_id=SREP-639-20140624.
[40] 吴晓晓, 李福山, 吴薇, 等. 基于石墨烯/PEDOT:PSS叠层薄膜的柔 性OLED器件[J]. 发光学报, 2014, 35(4): 486-490. Wu Xiaoxiao, Li Fushan, Wu Wei, et al. Flexible organic light emitting diodes based on double-layered graphene/PEDOT: PSS conductive film[J]. Chinese Journal of Luminescence, 2014, 35(4): 486-490.
[41] Li F, Lin Z, Zhang B, et al. Fabrication of flexible conductive graphene/Ag/Al-doped zinc oxide multilayer films for application in flexible organic light-emitting diodes[J]. Organic Electronics, 2013, 14 (9): 2139-2143.
[42] 郭颂, 杜晓刚,刘晓云, 等. 氧化石墨烯作为共蒸镀掺杂材料在 OLED中的应用[J]. 发光学报, 2013, 34(5): 595-599. Guo Song, Du Xiaogang, Liu Xiaoyun, et al. Graphene oxide as doping material for assembling OLEDs via thermal co-evaporation with NPB and Alq3[J]. Organic Electronics, 2013, 34(5): 595-599.
[43] Zhai T, Li L, Ma Y, et al. One-dimensional inorganic nanostructures: Synthesis, field-emission and photodetection[J]. Chemical Society Reviews, 2011, 40(5): 2986-3004.
[44] Ding J, Yan X, Li J, et al. Enhancement of field emission and photoluminescence properties of graphene-SnO2 composite nanostructures[J]. ACS Applied Materials & Interfaces, 2011, 3(11): 4299-4305.
[45] 李智军, 张晖, 薛河. 石墨烯纳米片及其场发射性能研究[J]. 化工新 型材料, 2010, 37(4): 1-3. Li Zhijun, Zhang Hui, Xue He. Graphene nanoflak (GNFs) and their electron emission[J]. New Chemical Materials, 2010, 37(4): 1-3.
[46] Deng J H, Cheng L, Wang F J, et al. High current density and longtime stable field electron transfer from large-area densely arrayed graphene nanosheet-carbon nanotube hybrids[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21558-21566.
[47] Sharma H, Agarwal D C, Sharma M, et al. Structure-modified stress dynamics and wetting characteristics of carbon nanotubes and multilayer graphene for electron field emission investigations[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12531-12540.
[48] Wu C, Li F, Zhang Y, et al. Enhanced field emission performance of tetrapod-liked zinc oxide nanoneedles by coating with graphene oxide sheets[J]. Current Nano Science, 2012, 8(1): 23-25.
[49] Wu C, Li F, Zhang Y, et al. A surface-conducted field emission device with suspended graphene cathodes[J]. Applied Surface Science, 2013, 273: 432-436.