Artmisia ordosica was used as the experimental material for making biochar in this study. The effects of carbonization temperature on the pH and total K, Ca, and Mg of Artmisia ordosica biochar were investigated. The results showed that the concentrations of K, Ca, and Mg in the biochar increased with the increase of carbonization temperature. Compared with those at 300℃, the K, Ca, and Mg concentrations increased by 52.47%, 25.76%, and 86.32% at 900℃, respectively. The increase of element concentration is due to gradual removal of the volatile and decomposable components in Artmisia ordosica under different carbonization temperature. The heating process of carbonization enriches K, Ca, Mg, and other elements (relative enrichment coefficient RE>1). Low temperature contributes to the enrichment of K and Ca, while medium temperature is favorable for Mg. The RE of the three elements reached their maximum values at 300, 300 and 500℃, being 1.17, 1.15, and 1.22, respectively. The pH increased with the increase of carbonization temperature. The alkalinity of the biochar was correlated to the enrichment of the three elements, and the number and types of oxygen-containing functional groups at the biochar surface, and it had good correlation with the total alkaline functional groups at the surface of the biochar (with correlation coefficient of 0.8665).
[1] Hayes M H B. Biochar and biofuels for a brighter future[J]. Nature, 2006, 443(7108): 144-148.
[2] Lehmann J. A handful of carbon[J]. Nature, 2007, 447(7141): 143-144.
[3] Mathews J A. Carbon-negative biofuels[J]. Energy Policy, 2008, 36(3): 940-945.
[4] 何绪生, 耿增超, 佘雕, 等. 生物炭生产与农用的意义及国内外动态[J]. 农业工程学报, 2011, 27(2): 1-7. He Xusheng, Geng Zengchao, She Diao, et al. Implications of production and agricultural utilization of biochar and its international dynamics[J]. Transactions of the CSAE, 2011, 27(2): 1-7.
[5] 潘根兴, 林振衡, 李恋卿, 等. 试论我国农业和农村有机废弃物生物质 炭产业化[J]. 中国农业科技导报, 2010, 13(1): 75-82. Pan Genxing, Lin Zhenheng, Li Lianqing, et al, Perspective on biomass carbon industrialization of organic waste from agriculture and rural areas in china[J]. Journal of Agricultural Science and Technology, 2010, 13(1): 75-82.
[6] Asai H, Benjamin K, Samson H, et al. Biochar amendment techniques for upland rice production in northern laos[J]. Field Crops Research, 2009, 111(1/2): 81-84.
[7] Wang H C, Feng L Y, Cheng Y G. Advances in biochar production from wastes and its applications[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 907-914.
[8] 林晓芬, 张军, 尹燕山, 等. 生物质碳孔隙分形特征研究[J]. 生物质化 学工程, 2009, 43(3): 9-21 Lin Xiaofen, Zhang Jun, Yin Yanshan, et al. Study on fractal characteristics of biomass chars[J]. Biomass Chemical Engineering, 2009, 43(3): 9-21.
[9] 吴城, 张晓丽, 李关宾. 黑碳制备的不同热解温度对其吸附菲的影响[J]. 中国环境科学, 2007, 27 (1): 125-128 Wu Cheng, Zhang Xiaoli, Li Guanbin. Effects of pyrolytic temperature of phenanthrene on its adsorption to black carbon[J]. China Environmental Science, 2007, 27(1): 125-128.
[10] Bird M I, Wurster C M, de Paula Silva P H, et al. Algal biocharproduction and properties[J]. Bioresouree Technology, 2010, 102(2): 1186-1891.
[11] 刘玉学, 刘微, 吴伟祥, 等. 土壤生物质炭环境行为与环境效应[J]. 应 用生态学报, 2009, 20(4): 977-982. Liu Yuxue, Liu Wei, Wu Weixiang, et al. Effect of biochar on the characteristic of nitrogen loss and greenhouse gas emission from soil[J]. Chinese Journal of Applied Ecology, 2009, 20(4): 977-982.
[12] Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3488-3497.
[13] Cao X, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 2010, 101(14): 5222-5228.
[14] 陈温福, 张伟明, 孟军, 等. 生物炭应用技术研究[J]. 中国工程科学, 2011, 13(2): 83-89. Chen Wenfu, Zhang Weiming, Meng Jun, et al. Researches on biochar application technology[J]. Engineering Sciences, 2011, 13(2): 83-89.
[15] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 1981. Bao Shidan. The soil agro-chemistry analysis[M]. Beijing: China Agricultural Press, 1981.
[16] 程国淡, 黄青, 张凯松. 热解温度和时间对污泥生物碳理化性质的影响[J]. 环境工程学报, 2012, 6(11): 4209-4214. Cheng Guodan, Huang Qing, Zhang Kaisong. Effect of pyrolysis temperature and duration on production and nutrient properties of sludge biochar[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 4209-4214.
[17] Boehm H P. Some aspects of the surface chemistry of carbon blacks and other carbon[J]. Carbon, 1994, 32(5): 759-769.
[18] 范延臻, 王宝贞, 王琳, 等. 改性活性炭的表面特性及其对金属离子 的吸附性能[J]. 环境化学, 2001, 20(5): 437-443. Fan Yanzhen, Wang Baozhen, Wang ling, et al. Surface characteristics of modified activated carbons and its adsorption performance of heavy metal ions[J]. Environmental Chemistry, 2001, 20(5): 437-443.
[19] Barton S S, Evans M J B, Halliop E, et al. Acidic and basic site on the surface porous carbon[J]. Carbon, 1997, 35(9): 1364-1366.
[20] 肖瑞瑞, 陈雪莉, 周志杰, 等. 温度对生物质热解产物有机结构的影 响[J]. 太阳能学报, 2010, 31(4): 491-496. Xiao Ruirui, Chen Xueli, Zhou Zhijie, et al. Effect of temperature on organic structure of biomass pyrolysis products[J]. Acta Energlan Solaris Sinica, 2010, 31(4): 491-496.
[21] 谢祖彬, 刘琦, 许燕萍, 等. 生物炭研究进展及其研究方向[J]. 土壤, 2011, 43(6): 857-861. Xie Zubin, Liu Qi, Xu Yanping, et al. Advances and perspectives of biochar research [J]. Soil, 2011, 43(6): 857-861.
[22] 罗烨. 芦竹制备生物炭的特性表征及对土壤N2O排放的抑制[D]. 青 岛: 中国海洋大学, 2012. Luo Ye. Production and characterization of giant reed (arundo donax linn.) biochars for inhibiting N2O emission from soil[D]. Qingdao: Ocean University of China, 2012.
[23] Silber A, Levkovitch I, Graber E R. pH-dependent mineral release and surface properties of cornstraw biochar: Agronomic implications[J] . Environmental Science & Technology, 2010, 44(24): 9318-9323.
[24] 陈再明, 陈宝梁, 周丹丹. 水稻秸秆生物碳的结构特征及其对有机污 染物的吸附性能[J]. 环境科学学报, 2013, 33(1): 9-19. Cheng Zaiming, Chen Baoliang, Zhou Dandan. Composition and sorption properties of rice-straw derived biochars[J]. Acta Scientiae Circumstantiae, 2013, 33(1): 9-19.
[25] 王鹤. 生物炭催化过硫酸盐降解偶氮染料废水[D]. 吉林: 吉林大学, 2013. Wang He. Biochar catalyzed persulfate oxidation of azodye wastewater[D]. Jilin: Jilin University, 2013.
[26] 张伟明. 生物炭的理化性质及其在作物生产上的应用[D]. 辽宁: 沈 阳农业大学, 2012. Zhang Weiming. Physical and chemical properties of biochar and Its application in crop production[D]. Liaoning: Shenyang Agricultural University, 2012.
[27] 高海英. 一种生物炭基氮肥的特征及其对土壤作物的效应研究[D]. 西安: 西北农林科技大学, 2012. Gao Haiying. Research on charateristics of a biochar-based nitrogenous fertilizer ang its effects on soils and crops[D]. Xi'an: Northwest Agriculture and Forestry University of Science and Tchnology, 2012.
[28] 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景[J]. 中国农业科 学, 2013, 46(16): 3324-3333. Chen WenFu, Zhang Weiming, Meng Jun. Advances and prospects in research of biochar utilization in agriculture[J]. Scientia Agricultura Sinica, 2013, 46(16): 3324-3333.