This paper discusses the optimization of 16 high-voltage power sources for the four-field electrostatic precipitator to achieve energy saving and fly ash emission reduction. With 16 traditional single-phase rectifier-transformers (T/Rs), the PM10 and PM2.5 emissions and the primary power consumption are about 63 mg/m3, 23.9 mg/m3 and 1225 kV·A, respectively. After retrofitting the power sources with 16 ZH type three-phase T/Rs, the PM10 and PM2.5 emissions and the primary power consumption are about 10-16 mg/m3, 2.0-2.5 mg/m3 and 900-1050 kV·A, respectively. For a similar primary energy consumption, emissions for PM10 and PM2.5 are reduced by about 78% and 92%, respectively.
MA Yuankun
,
QIN Song
,
CHEN Liang
,
XU Rongtian
,
WANG Shilong
,
CHEN Ying
,
HAN Ping
,
ZHENG Qinzhen
,
SHEN Xinjun
,
LI Shuran
,
YAN Keping
. PM10 and PM2.5 emission control by electrostatic precipitator for coalfired power plants V: Optimization of high voltage power source with 660 MW boiler[J]. Science & Technology Review, 2015
, 33(6)
: 69
-72
.
DOI: 10.3981/j.issn.1000-7857.2015.06.011
[1] 肖创英. 促进燃煤电厂烟尘超低排放[J]. 科技导报, 2014, 32(33): 12. Xiao Chuangying. Technical progress for achieving low particle matter emission from coal-fired power plant[J]. Science & Technology Review, 2014, 32(33): 12.
[2] 王仕龙, 陈英, 韩平, 等. 燃煤电厂电除尘PM10和PM2.5的排放控制I:电 除尘选型及工业应用[J]. 科技导报, 2014, 32(33): 23-33. Wang Shilong, Chen Ying, Han Ping, et al. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants I: ESP sizing and application[J]. Science & Technology Review, 2014, 32 (33): 23-33.
[3] Li X, Zhang X, Zhu J, et al. Sensitivity analysis on the maximum ash resistivity in terms of its compositions and gaseous water concentration[J]. Journal of Electrostatics, 2012, 70(1): 83-90.
[4] Li S, Li X, Huang Y, et al. Fly ash resistivity: Influencing factors, predicting models and its impacts on electrostatic precipitator performance[M]. New Yorks: NOVA Science Publishers, 2014: 91-144.
[5] 王仕龙. 煤电厂电除尘PM10和PM2.5的排放控制II: 电除尘电源改造与 PM10和PM2.5的排放, 以660 MW机组为例[J]. 科技导报, 2014, 32(33): 34-38. Wang Shilong. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants II: Evaluation of ESP upgrading in terms of PM10 and PM2.5 emission reduction with a 660 MW generator[J]. Science & Technology Review, 2014, 32(33): 34-38.
[6] 王仕龙, 陈英, 韩平, 等. 燃煤电厂电除尘PM10和PM2.5的排放控制III: 电除尘电源及小分区改造与PM10和PM2.5的排放(以4×330 MW机组 为例)[J]. 科技导报, 2014, 32(33): 39-42. Wang Shilong, Chen Ying, Han Ping, et al. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants III: Application with a 4 × 330 MW power plant[J]. Science & Technology Review, 2014, 32(33): 39-42.
[7] Du C, Yang Y, Wang J, et al. Evaluation of ESP performance via its index value[J]. International Journal of Plasma Environment Science and Technology, 2015 (in Press).
[8] Zhu J, Zhao Q, Yao Y, et al. Effects of high-voltage power sources on fine particle collection efficiency with an industrial electrostatic precipitator[J]. Journal of Electrostatics, 2012, 70(3): 285-291.
[9] 沈欣军, 郑钦臻, 宁致远, 等. 燃煤电厂电除尘PM10和PM2.5的排放控制 IV: 采用二维PIV除尘[J]. 科技导报, 2014, 32(33): 43-50. Shen Xinjun, Zheng Qinzhen, Ning Zhiyuan, et al. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants IV: Investigation on electrostatic precipitation by means of 2D PIV technique[J]. Science & Technology Review, 2014, 32(33): 43-50.
[10] Noda N, Makino H. Influence of operating temperature on performance of electrostatic precipitator for pulverized coal combustion boiler[J]. Advanced Powder Technology, 2010, 21(4): 495-499.
[11] 南京电力设备质量性能检验中心. NICE/P/2014-TY2014011-HB01, NICE/P/2014-TY2014012-HB01神华国能宁夏煤电有限公司鸳鸯湖 电厂静电除尘改造后性能试验[R]. 南京: 南京电力设备质量性能检 验中心, 2014. Nanjing Inspection Center of Quality Performance for Electric Power Equipment. ESP performance evaluation of Yuanyang Hu Power Plant, No NICE/P/2014-TY2014011-HB01, No NICE/P/2014-TY2014012-HB01[R]. Nanjing: Guodian Science and Technology Research Institute, 2014.