Articles

Structural control of reservoir forming for natural gas hydrate in Sanlutian Well Field, Qinghai

  • CHEN Limin ,
  • CAO Daiyong ,
  • JIANG Ailin ,
  • QIN Rongfang ,
  • LI Jing ,
  • LI Yonghong ,
  • WANG Weichao
Expand
  • 1. State Key Laboratory of Coal Resources and Mine Safety; China University of Mining & Technology, Beijing 100083, China;
    2. General Institute of Chemical Geology Survey, China Chemical Geology and Mine Bureau, Beijing 100013, China;
    3. Qinghai No. 105 Coal Geological Exploration Team, Xining 810007, China

Received date: 2014-11-18

  Revised date: 2015-01-14

  Online published: 2015-04-10

Abstract

In 2008, practical samples of natural gas hydrate(NGH)were drilled out in the frozen soil region of the Qilian Mountain in the Qinghai-Tibetan Plateau for the first time in China, and since then the Sanlutian Well Field in the Muli Coalfield becomes a research focus. But the lack of studies of the controlling factors of the NGH's formation and storage and the NGH's distribution hinders the NGH's exploration and exploitation. An analysis of the materials taken out of the NGH's boreholes in the Sanlutian Well Field and the well field's structural framework reveals the NGH's formation process in the study area, including the structure's role in controlling the NGH reservoir forming. It is concluded that: 1) a reservoir of the NGH is formed by hydrocarbon gases first, and then the NGH enters the temperature-pressure stable zone with Qinghai-Tibetan Plateau's rapid uplift to form a hydrate reservoir; 2) the study area's structure features of partition and zoning control the NGH's flat spreading; the structural movement decides the middle Jurassic coal measures' sedimentation, the hydrocarbon generation and the temperature-pressure stable zone's formation; the structural shape provides the channels, the cap rocks and the storage areas for hydrocarbon gases' enrichment; the later tectonism destroys the earlier gas reservoir and the NGH reservoir.

Cite this article

CHEN Limin , CAO Daiyong , JIANG Ailin , QIN Rongfang , LI Jing , LI Yonghong , WANG Weichao . Structural control of reservoir forming for natural gas hydrate in Sanlutian Well Field, Qinghai[J]. Science & Technology Review, 2015 , 33(6) : 91 -96 . DOI: 10.3981/j.issn.1000-7857.2015.06.015

References

[1] Makogon Y F, Holditch S A, Makogon T Y, et al. Russian field illustrates gas-hydrate production[J]. Oil and Gas Journal, 2005, 103(5): 43-47.
[2] 祝有海, 张永勤, 文怀军, 等. 青海祁连山冻土区发现天然气水合物[J]. 地质学报, 2009, 83(11): 1762-1771. Zhu Youhai, Zhang Yongqin, Wen Huaijun, et al. Natural gas hydrate found in the Qilian permafrost, Qinghai[J]. Acta Geologica Sinica, 2009, 83(11): 1762-1771.
[3] 卢振权, 祝有海, 张永勤, 等. 青海祁连山冻土区天然气水合物存在的 主要证据[J]. 现代地质, 2010, 24(2): 329-336. Lu Zhenquan, Zhu Youhai, Zhang Yongqin, et al.Major evidence for gas hydrate existence in the Qilian Permafrost, Qinghai[J]. Geoscience, 2010, 24(2): 329-336.
[4] Lu Z, Zhu Y, Zhang Y. Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai Province, China[J]. Cold Regions Science and Technology, 2011, 66(2/3): 93-104.
[5] 祝有海, 张永勤, 文怀军, 等. 祁连山冻土区天然气水合物及其基本特 征[J]. 地球学报, 2010, 31(1): 7-16. Zhu Youhai, Zhang Yongqin, Wen Huaijun, et al. Gas hydrates in the Qilian Mountain permafrost and their basic characteristics[J]. Acta Geoscientica Sinica, 2010, 31(1): 7-16.
[6] 余朝丰. 断裂与天然气水合物的依存关系[J]. 海洋地质动态, 2006, 22 (12): 34-37. Yu Chaofeng. Dependence of fracture and gas hydrate[J]. Marine Geology Letters, 2006, 22(12): 34-37.
[7] 张光学, 祝有海, 梁金强, 等. 青藏高原多年冻土形成时代的探讨[J]. 冰川冻土, 1981, 3(1): 32-37. Zhang Guangxue, Zhu Youhai, Liang Jinqiang, et al. Discussion on the time of form ation of permafrost on Qingzang Plateau[J]. Journal of Glaciology and Geocryology, 1981, 3(1): 32-37.
[8] 杨传胜, 李刚, 龚建明, 等. 断裂对天然气水合物成藏的控制作用[J]. 海洋地质动态, 2009, 25(6): 1-5. Yang Chuansheng, Li Gang, Gong Jianming, et al. Fracture control on the gas hydrate accumulation[J]. Marine Geology Letters, 2009, 25(6): 1-5.
[9] 王建, 邱文弦, 赵俐红. 天然气水合物发育的构造背景分析[J]. 地质科 技情报, 2010, 29(2): 100-106. Wang Jian, Qiu Wenxian, Zhao Lihong. Tectonic settings analysis of gas hydrate deposits development[J]. Geological Science and Technology Information, 2010, 29(2): 100-106.
[10] 张光学. 构造控制型天然气水合物矿藏及其特征[J]. 现代地质, 2006, 20(4): 605-612. Zhang Guangxue. Tectonic controls on gas hydrate deposits and their haracteristics[J]. Geoscience, 2006, 20(4): 605-612.
[11] 曹代勇, 孙红波, 孙军飞. 青海东北部木里煤田控煤构造样式与找煤 预测[J]. 地质通报, 2010, 29(11): 1696-1703. Cao Daiyong, Sun Hongbo, Sun Junfei. Coal-controlled structural styles and looking for coal resources in Muli coalfield, northeastern Qinghai, China[J]. Geological Bulletin of China, 2010, 29(11): 1696-1703.
[12] 郭晋宁, 李猛, 邵龙义. 青海聚乎更矿区煤层气富集条件[J]. 中国煤 炭地质, 2011, 23(6): 16-32. Guo Jinning, Li Meng, Shao Longyi. CBM enrichment conditions in Juhugeng Mine Area, Qinghai[J]. Coal Geology of China, 2011, 23(6): 16-32.
[13] 李靖. 青海省两大赋煤区煤系非常规气形成条件及对比研究[D]. 北 京: 中国矿业大学(北京), 2013. Li Jing. Analyses and comparison of formation condition of coalbearing unconventional gas of two coal-rich regions, Qinghai Province[D]. Beijing: China University of Mining and Technology, 2013.
[14] 张文, 孙占学, 李文娟, 等. Thermodel for Windows 系统的模拟及实 例研究[J]. 东华理工学院学报, 2005, 4: 341-348. Zhang Wen, Sun Zhanxue, Li Wenjuan, et al. Paleogeothermal modeling using Thermodel for Windows system with case study[J]. Journal of East China Institute of Technology, 2005, 4: 341-348.
[15] 王绍令. 晚更新世以来青藏高原多年冻土形成及演化的探讨[J]. 冰 川冻土, 1989, 11(1): 69-75. Wang Shaoling. Formation and evolution of permafrost on the Qinghai-Xizang Plateau since the late pleistocene[J]. Journal of Glaciology and Geocryology, 1989, 11(1): 69-75.
[16] 李吉均. 青藏高原隆升与晚新生代环境变化[J]. 兰州大学学报: 自然 科学版, 2013, 49(2): 154-159. Li Jijun. Tibetan Plateau uplift and Late Cenozoic environmental change[J]. Journal of Lanzhou University: Natural Science Edition, 2013, 49(2): 154-159.
[17] 李吉均. 青藏高原的地貌演化与亚洲季风[J]. 海洋地质与第四纪地 质, 1999, 19(1): 7-17. Li Jijun. Studies on the geomorphological evolution of Qinghai-Xizang (Tibetan) Plateau and Asian monsoon[J]. Marine Geology & Quaternary Geology, 1999, 19(1): 7-17.
[18] Narr W, Lerch I A. Method for estimating fracture density in core[J]. AAPG Bulletin, 1984, 68(5): 637-648.
[19] 曾联波, 田崇鲁. 伸展构造区低渗透储层构造裂缝的分布特征[J]. 石 油实验地质, 1997, 19(4): 344-347. Zeng Lianbo, Tian Chonglu. Distribution characteristics of fractures in low permeable reservoirs in an extensional structural region[J]. Experimental Petroleum Geology, 1997, 19(4): 344-347.
[20] 刘岩. 低渗透储层裂缝特征及其对油气富集的控制作用[D]. 成都: 成都理工大学, 2013. Liu Yan. Fracture characteristics of low permeability reservoirs and the control action of the accumulation of oil and gas[D]. Chengdu: Chengdu University of Technology, 2013.
[21] 卢振权, Sultan Nabil, 金春爽, 等. 青藏高原多年冻土区天然气水合 物形成条件模拟研究[J]. 地球物理学报, 2009, 52(1): 157-168. Lu Zhenquan, Sultan Nabil, Jin Chunshuang, et al. Modeling on gas hydrate formation conditions in the Qinghai Tibet Plateau permafrost[J]. Chinese Journal of Geophysics, 2009, 52(1): 157-168.
[22] 庞守吉. 祁连山木里天然气水合物钻孔沉积构造特征及与水合物分 布关系研究[D]. 北京: 中国地质大学(北京), 2012. Pang Shouji. Relationship between tectonic, sedimentation characteristics and distribution of gas hydrate in Muli Coalfield of Qilian Mountain, China[D]. Beijing: China University of Geosciences, 2012.
[23] 庞守吉, 苏新, 何浩, 等. 祁连山冻土区天然气水合物地质控制因素 分析[J]. 地质前缘, 2013, 20(1): 223-239. Pang Shouji, Su Xin, He Hao, et al. Geological controlling factors of gas hydrate occurrence in Qilian Mountain permafrost, China[J]. Earth Science Hrontiers, 2013, 20(1): 223-239.
Outlines

/