Microwave catalytic oxidation degradation of crystal violet over microwave catalyst CuO/AC and its mechanism

  • ZHOU Jicheng ,
  • YIN Jingya ,
  • YIN Cheng ,
  • LUO Yushang
  • Key Laboratory of Green Catalysis and Chemical Reaction Engineering of Hunan Province; School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China

Received date: 2014-10-14

  Revised date: 2014-12-16

  Online published: 2015-05-04


As a treatment for the industrial dye wastewater, this paper proposes a novel method of the microwave catalytic oxidation degradation (MCOD) using CuO/AC catalyst, and this novel method is used for the treatment of the crystal violet contaminant as a model wastewater in the aqueous solution without adding oxidant. The activated carbon-supported copper oxide (CuO/AC) is prepared by using the impregnation method and is characterized by using the XRD and the FT-IR. The effects of the metal loadings, the microwave catalyst dosage, the microwave power, the irradiation time and the initial crystal violet concentration on the degradation are investigated. It is shown that the removal rate of the crystal violet reaches up to 99.48%, with the removal rate of TOC being 90.4% under the optimized conditions: 0.8% of the CuO loading, 400 W of the MW power, 0.6 g of the dosage of the microwave catalyst, 6 min of the reaction time, and 100 mg/L of the initial concentration. The experiment of adding several different radical scavengers shows that the hydroxyl radicals (·OH) exist in the reaction process. The results indicate that the microwave catalytic oxidation degradation method could degrade the crystal violet wastewater effectively.

Cite this article

ZHOU Jicheng , YIN Jingya , YIN Cheng , LUO Yushang . Microwave catalytic oxidation degradation of crystal violet over microwave catalyst CuO/AC and its mechanism[J]. Science & Technology Review, 2015 , 33(7) : 67 -73 . DOI: 10.3981/j.issn.1000-7857.2015.07.011


[1] Chen C C, Liao H J, Cheng C Y, et al. Biodegradation of crystal violet by Pseudomonas putida[J]. Biotechnology Letters, 2007, 29(3): 391-396.
[2] 周凤妃, 程迎, 甘莉, 等. Cu(II)对Burkholderia vietnamiensis C09V 生物/降解废水中结晶紫的影响[J]. 福建师范大学学报: 自然科学版, 2013, 29(5): 66-70. Zhou Fengfei, Cheng Ying, Gan Li, et al. Effect of Cu(II) on the bioremoval of crystal violetby burkholderia vietnamiensis C09V[J]. Journal of Fujian Normal University: Natural Science Edition, 2013, 29 (5): 66-70.
[3] 张敬华, 陈慧娟. 改性麦壳对结晶紫的吸附作用研究[J]. 化工新型材料, 2013, 61(7): 187-189. Zhang Jinghua, Chen Huijuan. Study on adsorption of crystal violet by modified wheat shell husk[J]. New Chemical Materials, 2013, 61(7): 187-189.
[4] 苗慧, 张慧, 张文保, 等. 钨掺杂氧化钦纳米管光催化降解结晶紫染料的性能[J]. 光谱实验室, 2013, 30(2): 599-603. Miao Hui, Zhang Hui, Zhang Wenbao, et al. Research on the photocatalytic degradation of crystal violet dye by doping tungsten titanium oxide nanotubes[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(2): 599-603.
[5] 杨海洋, 郭然, 齐蒙蒙, 等. 超声波辐照和臭氧氧化协同降解废水中的结晶紫[J]. 化学研究, 2013, 24(3): 269-273. Yang Haiyang, Guo Ran, Qi Mengmeng, et al. Degradation of crystal violet in wastewater under ultrasonic wave irradiation combined with ozone oxidizing[J]. Chemical Research, 2013, 24(3): 269-273.
[6] 张国宇, 王鹏, 陈小英, 等. 三相流化床中微波诱导氧化处理含酚废水研究[J]. 哈尔滨工业大学学报, 2004, 36(6): 708-711. Zhang Guoyu, Wang Peng, Chen Xiaoying, et al. Phenol removal by microwave induced oxidation process in three-phase fluidized-bed reactor[J]. Journal of Harbin Institute of Technology, 2004, 36(6): 708- 711.
[7] 吕敏春, 严莲荷, 王剑虹, 等. 光、微波、热催化氧化效果的比较[J]. 工业水处, 2003, 23(8): 36-38. Lü Minchun, Yan Lianhe, Wang Jianhong, et al. Comparison of photocatalysis oxidation, microwave catalysis oxidation and thermocatalysis oxidation[J]. Industrial Water Treatment, 2003, 23(8): 36-38.
[8] Ai Z H, Yang P, Lu X H. Degradation of 4-chlorophenol by microwave irradiation enhanced advanced oxidation processes[J]. Chemosphere, 2005, 60(6): 824-827.
[9] 李莉, 张秀芬, 马禹, 等. 微波增强H3PW12O40/TiO2光催化降解染料和水杨酸的研究[J]. 分子催化, 2008, 22(6): 532-537. Li Li, Zhang Xiufen, Ma Yu, et al. Microwave enhanced H3PW12O40/ TiO2 photo-catalytic degradation of dye and salicylic acid[J]. Journal of Molecular Catalysis A: Chemical, 2008, 22(6): 532-537.
[10] Bi X Y, Peng W, Jiao C Y. Degradation of remazol golden yellow dye wastewater in microwave enhanced ClO2 catalytic oxidation process[J]. Journal of Hazardous Materials, 2009, 168(2): 895-900.
[11] Hong J, Yuan N N, Wang Y N. Efficient degradation of Rhodamine B in microwave- H2O2 system at alkaline pH[J]. Chemical Engineering Journal, 2012, 191: 364-368.
[12] 赵德明, 李敏, 张建庭, 等. 微波强化臭氧氧化降解苯酚水溶液[J]. 化工学报, 2009, 60(12): 3137-3141. Zhao Deming, Li Min, Zhang Jianting, et al. Degradation of phenol aqueous solution by microwave enhanced ozone oxidation[J]. Chemical Engineering Journal, 2009, 60(12): 3137-3141.
[13] 袁茂彪, 马雄风, 王书萍, 等. 絮凝-微波辐射-Fenton试剂氧化法深度处理焦化废水[J]. 化工环保, 2013, 33(6): 513-516. Yuan Maobiao, Ma Xiongfeng, Wang Shuping, et al. Aadvanced treatment of coking wastewater by flocculation-microwave irradiationfenton reagent oxidation[J]. Environmental Protection of Chemical Industry, 2013, 33(6): 513-516.
[14] Ju Y M, Yang S G, Ding Y C. Microwave-enhanced H2O2-based process for treating aqueous malachite green solutions: Intermediates and degradation mechanism[J]. Journal of Hazardous Materials, 2009, 171 (1): 123-132.
[15] Li L, Zhang X L, Zhang W Z. Microwave-assisted synthesis of nanocomposite Ag/ZnO-TiO2 and photocatalytic degradation Rhodamine B with different modes[J]. Colloids and Surfaces A: Physicochemical Engineering Aspects, 2014, 457: 134-141.
[16] He H, Yang S G, Yu K. Microwave induced catalytic degradation of crystal violet in nanonickel dioxide suspensions[J]. Journal of Hazardous Materials, 2010, 173(1): 393-400.
[17] 王文亮, 李东升, 王振军, 等. CuO超细粉体的形貌与红外特性研究[J]. 无机化学学报, 2002, 18(8): 823-826. Wang Wenliang, Li Dongsheng, Wang Zhenjun, et al. Morphology and infrared characteristics of ultrafine powder CuO[J]. Chinese Journal of Inorganic Chemistry, 2002, 18(8): 823-826.
[18] 刘娟, 焦华, 蔡秀琴. CuO纳米球制备及性质研究[J]. 渭南师范学院学报, 2010, 25(2): 38-41. Liu Juan, Jiao Hua, Cai Xiuqin. Preparation and properties of CuO nanoparticles[J]. Weinan Teachers College, 2010, 25(2): 38-41.
[19] 刘成雁, 李在元, 刘海英, 等. 沉淀转化法制备CuO纳米纤维[J]. 中国有色冶金, 2006, 6(3): 34-36. Liu Chengyan, Li Zaiyuan, Liu Haiying, et al. Preparation of CuO precipitation conversion nanofibers[J]. China Nonferrous Metallurgy, 2006, 6(3): 34-36.
[20] Zhao J H, Liu Z Y, Sun D K. TPO-TPD study of an activated carbonsupported copper catalyst-sorbent used for catalytic dry oxidation of phenol[J]. Journal of Catalysis, 2004, 227(2): 297-2303.
[21] 赵江红, 刘振宇. 金属担载量对CuO/AC干法催化氧化苯酚的影响[J]. 燃料化学学报, 2006, 34(1): 75-80. Zhao Jianghong, Liu Zhenyu. Effect of metal loadings on catalytic dry oxidation of phenol by CuO/AC catalyst-sorbents[J]. Journal of Fuel Chemistry and Technology, 2006, 34(1): 75-80.
[22] Guo Y W, Cheng C P, Wang J, et al. Detection of reactive oxygen species (ROS) generated by TiO2(R), TiO2(R/A) and TiO2(A) under ultrasonic and solar light irradiation and application in degradation of organic dyes[J]. Journal of Hazardous Materials, 2011, 192(2): 786-793.
[23] Quan X, Zhang Y B, Chen S. Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances[J]. Journal of Molecular Catalysis A: Chemical, 2007, 263(1): 216-222.
[24] Zhang Z H, Xu Y, Ma X P. Microwave degradation of methyl orange dye in aqueous solution in the presence of nano- TiO2- supported activated carbon (supported- TiO2/AC/MW) [J]. Journal of Hazardous Materials, 2012, 209/210: 271-277.
[25] Lin L, Yuan S, Chen J. Removal of ammonia nitrogen in wastewater by microwave radiation[J]. Journal of Hazardous Materials, 2009, 161: 1063-1068.
[26] Wang X, Zhang T, Xu C. Microwave effects on the selective reduction of NO by CH4 over an In- Fe2O3/HZSM- 5 catalyst[J]. Chemical Communications, 2000(4): 279-280.
[27] Tang J W, Zhang T, Liang Dm, et al. Microwave discharge-assisted catalytic conversion of NO to N2[J]. Chemical Communications, 2000 (19): 1861-1862.
[28] Zhang Z, Jiatieli J, Liu D, et al. Microwave induced degradation of parathion in the presence of supported anatase- and rutile- TiO2/AC and comparison of their catalytic activity[J]. Chemical Engineering Journal, 2013, 231: 84-93.