Progress in the study on plant cytoplasm fossils

  • WANG Xin
  • State Key Laboratory of Palaeobiology and Stratigraphy; Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China

Received date: 2014-12-30

  Revised date: 2015-02-06

  Online published: 2015-05-04


Plant cytoplasm fossil appears intangible for many palaeontologists. The palaeobotanical practice in the past decades has indicated that plant cytoplasm fossil is a truthful existence. With the improvement of observing technologies, many ultrastructures comparable to those in living plants are being revealed. Sometimes the study on fossil plant cytoplasm can lend critical help to modern biologists on some headache problems. High temperature and wild fire play a key role in the fossilization of plant cytoplasm, and a formerly frequently ignored phenomenon, lightning, is of special importance for the fixation of some ultrastructure in fossil plant cells. The study on plant cytoplasm fossils helps lead palaeobotany onto a new level, promotes its fusion with other scientific disciplines, and also introduces new technologies into palaeontology. This paper reviews the history of plant cytoplasm fossil study, summarizes the achievement and knowledge accumulated so far, and depicts the future development in this field.

Cite this article

WANG Xin . Progress in the study on plant cytoplasm fossils[J]. Science & Technology Review, 2015 , 33(7) : 108 -113 . DOI: 10.3981/j.issn.1000-7857.2015.07.018


[1] Wang X, Yuan X, Zhou C, et al. Anatomy and plant affinity of Chuaria[J]. Chinese Science Bulletin, 2011, 56(12): 1256-1261.
[2] Darrah W C. A remarkable fossil Selaginella with preserved female gametophytes[J]. Botanical Museum Leaflet Harvard University, 1938, 6 (6): 113-135.
[3] Taylor T N, Millay M A. Structurally preserved fossil cell contents[J]. Transaction of American Microscope Society, 1977, 96(3): 390-393.
[4] Niklas K J. Differential preservation of protoplasm in fossil angiosperm leaf tissues[J]. American Journal of Botany, 1982, 69(3): 325-334.
[5] NiklasKJ.Organellepreservationandprotoplastpartitioningin angiosperm leaf tissues[J]. American Journal of Botany, 1983, 70(4): 543-548.
[6] Niklas K J, Brown R M, Santos R, et al. Ultrastructure and cytochemistry of Miocene angiosperm leaf tissues[J]. Proceedings of the National Academy of the Sciences of the United States of America, 1978, 75(7): 3263-3267.
[7] Niklas K J, Brown R M J, Santos R. Ultrastructural states of preservation in Clarkia angiosperm leaf tissues: Implications on modes of preservation[M]//Smiley C J. Late Cenozoic History of the Pacific Northwest. San Francisco: American Association for the Advancement of Science, Pacific Division, 1985.
[8] Poinar H N, Melzer R R, Poinar G O. Ultrastructure of 30-40 million year old leaflets from Dominican amber (Hymenaea protera, Fabaceae: Angiospermae)[J]. Experimentia, 1996, 52(4): 387-390.
[9] Schoenhut K, Vann D R, Lepage B A. Cytological and ultrastructural preservations in Eocene Metasequoia leaves from the Canadian High Arctic[J]. American Journal of Botany, 2004, 91(6): 816-824.
[10] Ozerov I A, Zhinkina N A, Efimov A M, et al. Feulgen- positive staining of the cell nuclei in fossilized leaf and fruit tissues of the lower Eocene Myrtaceae[J]. Botanical Journal Linnean Society, 2006, 150(3): 315-321.
[11] Zhilin S G, Yakovleva O V. On the preservation of anatomical and ultrathin structures of the leaf compressions of Eucommia palaeoulmoides (Eucommiaceae) from the Miocene in Kazakhstan[J]. Botanicheskii Zhurnal, 1994, 79(10): 1-8.
[12] Wang X. Plant cytoplasm preserved by lightning[J]. Tissue & Cell, 2004, 36(5): 351-360.
[13] Wang X. A chemical signal possibly related to physiology in fossil cells detected by energy dispersive X-ray microanalysis[J]. Tissue & Cell, 2006, 38(1): 43-51.
[14] Wang X. High temperature as a mechanism for plant cytoplasm preservation in fossils[J]. Acta Geologica Sinica, 2007, 81(2): 183-193.
[15] Wang X, Du K, Yi T, et al. Cytoplasmic remains in an Eocene fossil stem[J]. IAWA Journal, 2010, 31(3): 363-367.
[16] Wang X, Liu W, Cui J, et al. Palaeontological evidence for membrane fusion between a unit membrane and a half- unit membrane[J]. Molecular Membrane Biology, 2007, 24(5/6): 496-506.
[17] Wang X, Liu W, Du K. Palaeontological evidence of membrane relationship in step-by-step membrane fusion[J]. Molecular Membrane Biology, 2011, 28(2): 115-122.
[18] Wang X, Liu W, Du K, et al. Ultrastructure of chloroplasts in fossil Nelumbo from the Eocene of Hainan Island, South China[J]. Plant Systematics and Evolution, 2014, 10: 2259-2264.
[19] Wang X, Yu J, Fang X. An AFM observation on fossil cytoplasm[J]. Acta Geologica Sinica, 2008, 82(6): 1141-1145.
[20] Darrah W C. Textbook of paleobotany[M]. New York: D. Appleton- Century Company, 1939.
[21] Oehler D Z. Transmission electron microscopy of organic microfossils from the late Precambrian Bitter Springs Formation of Australia; Techniques and survey of preserved ultrastructure[J]. Journal of Paleontology, 1976, 50(1): 90-106.
[22] Oehler D Z. Pyrenoid-like structures in late Precambrian algae from the Bitter Springs Formation of Australia[J]. Journal of Paleontology, 1977, 51(5): 885-901.
[23] Bomfleur B, Mcloughlin S, Vajda V. Fossilized nuclei and chromosomes reveal 180 million years of genomic stasis in royal ferns[J]. Science, 2014, 343(6177): 1376-1377.
[24] Niklas K J, Brown R M. Ultrastructural and paleobiochemical correlations among fossil tissue from the St. Maries River (Clarkia) area, Northern Idaho, USA[J]. American Journal of Botany, 1981, 68(3): 332-341.
[25] Nishida H, Pig K B, Rigby J F. Swimming sperm in an extinct Gondwanan plant[J]. Nature, 2003, 422(6930): 396-397.
[26] Nishida H, Pigg K B, Kudo K, et al. Zooidogamy in the late Permian genus Glossopteris[J]. Journal of Plant Research, 2004, 117(4): 323- 328.
[27] SchoenhutK.Environmentalimplicationsofthepreservationof chloroplast ultrastructure in Eocene Metasequoia leaves[J]. Paleobiology, 2005, 31 (3): 424-433.
[28] Niklas K J, Brown R M. Some chemophysical factors attending fossilization[J]. Bioscience, 1981, 31(2): 148-149.
[29] Bradley W H. Chloroplast in Spirogyra from the Green River Formation of Wyoming[J]. American Journal of Science, 1962, 260(6): 455-459.
[30] Vikulin S V. The Eocene and early Oligocene floras of the Russian Plain and their relation to the palaeofloras of central Europe[J]. Acta Palaeobotanica, 1999, 2(Suppl 1): 429-445.
[31] Koller B, Schmitt J M, Tischendorf G. Cellular fine structures and histochemical reactions in the tissue of a cypress twig preserved in Baltic amber[J]. Proceeding of Royal Society B, 2005, 272(1559): 121- 126.
[32] Wang X, Cui J. The first observation on plant cell fossils in China[J]. Acta Geologica Sinica, 2007, 81(1): 16-22.
[33] Golenberg E M, Giannasi D E, Clegg M T, et al. Chloroplast DNA sequence from a Miocene Magnolia species[J]. Nature, 1990, 344 (6267): 656-658.
[34] Kim S, Soltis D E, Soltis P S, et al. DNA sequences from Miocene fossils: An ndhF sequence of Magnolia latahensis (Magnoliaceae) and an rbcL sequence of Persea pseudocarolinensis (Lauraceae) [J]. American Journal of Botany, 2004, 91(4): 615-620.
[35] Niklas K J, Giannasi D E. The paleobiochemistry of fossil angiosperm floras. Part II. Diagenesis of organic compounds with particular reference to steroids[M]. Smiley C J. Late Cenozoic history of the Pacific Northwest. San Francisco: American Association for the Advancement of Science, Pacific Division, 1985.
[36] Edwards D, Axe L. Anatomical evidence in the detection of the earliest wildfires[J]. Palaios, 2004, 19(2): 113-128.
[37] Li N, Deng H X, Zhang W H, et al. The impact of high temperature on living plant cytoplasm[J]. Acta Palaeontologica Sinica, 2013, 52(4): 484-491.
[38] Scott A C. Preservation by fire [M]//Briggs D E G, Crowther P R. Palaeobiology II. Malden: Blackwell Science, 2001.
[39] Scott A C, Cripps J A, Collinson M E, et al. The taphonomy of charcoal following a recent heathland fire and some implications for the interpretation of fossil charcoal deposits[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2000, 164(1-4): 1-31.
[40] Millay M A, Eggert D A. Microgametophyte development in the Paleozoic seed fern family Callistophytaceae[J]. American Journal of Botany, 1974, 61(10): 1067-1075.
[41] Wang X, Zhang Y, Du K, et al. Atomic force microscope observation on ultrastructures in plant cells[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(10): 6624-6628.
[42] Heuser J E, Reese T S, Dennis M J, et al. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release[J]. Journal of Cell Biology, 1979, 81(2): 275-300.
[43] Dwyer J R, Uman M A, Rassoul H K, et al. Energetic radiation produced during rocket- triggered lightning[J]. Science, 2003, 299 (5607): 694-697.
[44] Rakov V A, Uman M A. Lightning: Physics and effects[M]. Cambridge: Cambridge University Press, 2003.
[45] Login G R, Dvorak A M. Methods of microwave fixation for microscopy[M]. Stuttgart: Gustav Fischer Verlag, 1994.
[46] Schichnes D, Nemson J A, Ruzin S E. Microwave paraffin techniques for botanical tissues [M]//Giberson R T, Demaree R S. Microwave Techniques and Protocols. Totowa: Humana Press, 2001.
[47] Villanueva- Amadoz U, Benedetti A, Méndez J, et al. Focused ion beam nano-sectioning and imaging: A new method in characterisation of palaeopalynological remains[J]. Grana, 2012, 51(1): 1-9.
[48] Poinar H N, Höss M, Bada J L, et al. Amino acid racemization and the preservation of ancient DNA[J]. Science 1996, 272(5263): 864- 866.
[49] Poinar H N, Stankiewicz B A. Protein preservation and DNA retrieval from ancient tissues[J]. Proceedings of the National Academy of the Sciences of the United States of America, 1999, 96(15): 8426-8431.
[50] Niklas K J. Morphological and chemical examination of Courvoisiella ctenomorpha gen. et sp., a siphonous alga from the upper Devonian, West Virginia, U.S.A.[J]. Review of Palaeobotany and Palynology, 1976, 21(3): 187-203.
[51] Niklas K J. Paleophytochemistry: Implications concerning plant evolution[J]. Paleobiology, 1981, 7(1): 1-13.