[1] 马成樑. 飞机机翼除冰过程的数值研究[D]. 南京: 南京航空航天大学, 2007. Ma Chengliang. Numerical research on de-icing process on airfoils[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007.
[2] 胡鑫. 飞机的结冰与防(除)冰[J]. 科技创新导报, 2012(16): 73. Hu Xin. Icing and anti- icing (de- icing) of airplane[J]. Science and Technology Innovation Herald, 2012(16): 73.
[3] 周莉, 徐浩军, 龚胜科, 等. 飞机结冰特性及防除冰技术研究[J]. 中国安全科学学报, 2010, 20(6): 105-110. Zhou Li, Xu Haojun, Gong Shengke, et al. Research of aircraft icing characteristics and anti-icing and de-icing technology[J]. China Safety Science Journal, 2010, 20(6): 105-110.
[4] 姚若鹏. 翼型的结冰数值模拟及相关控制研究[D]. 南京: 南京航空航天大学, 2012. Yao Ruopeng. The numerical simulation of ice accretion on airfoil and control research[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
[5] 王超, 常士楠, 杨波, 等. 机翼防冰过程中冰脊问题的数值分析[J]. 北京航空航天大学学报, 2013, 39(6): 776-781. Wang Chao, Chang Shinan, Yang Bo, et al. Investigation of runback ice during aircraft anti- icing process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(6): 776-781.
[6] 李林, 王立新, 彭小东. 结冰对民机飞行性能的影响研究[J]. 飞行力学, 2004, 22(3): 12-16. Li Lin, Wang Lixin, Peng Xiaodong. The effect of icing on the flight performance of civil airplane[J]. Flight Dynamics, 2004, 22(3): 12-16.
[7] 朱东宇. 翼型结冰过程的数值模拟[D]. 南京: 南京航空航天大学, 2009. Zhu Dongyu. Numerical simulation of ice accretion on airfoil[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
[8] Broeren A P, Bragg M B. Effect of airfoil geometry on performance with simulated intercycle ice accretions[J]. Journal of Aircraft, 2005, 42(1): 121-130.
[9] 李斌. 飞机除冰/防冰液及除冰技术[J]. 清洗世界, 2012, 28(1): 26-31. Li Bin. Brief survey of deicing/anti- icing fluid and te- chniques for aircraft[J]. Cleaning World, 2012, 28(1): 26-31.
[10] 夏祖西, 彭华乔, 苏正良. 机场除冰液对环境的影响[J]. 中国民用航空, 2008(9): 51-52. Xia Zuxi, Peng Huaqiao, Su Zhengliang. Impact of airport de-icing fluid on the environment[J]. China Civil Aviation, 2008(9): 51-52.
[11] 张梅, 孟军锋, 孙哲, 等. 低表面能涂层在飞机防除冰领域的研究进展与应用[J]. 现代涂料与涂装, 2010, 13(9): 10-15. Zhang Mei, Meng Junfeng, Sun Zhe, et al. Research progress and application of low surface energy coating in the anti-icing areas of aircraft[J]. Modern Paint and Finishing, 2010, 13(9): 10-15.
[12] Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87.
[13] Paris H G, Deng F, Liotta C L, et al. Surface treatments for articles and vehicles: U S Patent 6,432,486[P/OL]. (2002-8-13) [2014-10- 24]. http://www.google.com/patents/US6432486.
[14] 李辉, 赵蕴慧, 袁晓燕. 抗结冰涂层:从表面化学到功能化表面[J]. 化学进展, 2012, 24(11): 2087-2096. Li Hui, Zhao Yunhui, Yuan Xiaoyan. Anti- icing coatings: From surface chemistry to functional surfaces[J]. Progress in Chemistry, 2012, 24(11): 2087-2096.
[15] 周艳艳. 铝基超疏水表面抗结霜结冰特性研究[D]. 大连: 大连理工大学, 2010. Zhou Yanyan. A study of defrosting and anti- icing behavior on superhydrophobic aluminum surfaces[D]. Dalian: Dalian University of Technology, 2010.
[16] Kimura S, Yamagishi Y, Sakabe A, et al. A new surface coating for prevention of icing on airfoils[R]. Pittsburgh: SAE, 2007.
[17] AvilaA,MunhozV,DiasM,etal.Superhydrophobicdopednanomembranes: A new approach for anti-ice formation on wings[R]. Honolulu: AIAA, 2012-1410, 2012.
[18] 杨常卫, 黄珺, 艾剑波. 超疏水表面材料在电热防/除冰系统应用中的节能原理分析[J]. 直升机技术, 2010(3): 35-40. Yang Changwei, Huang Jun, Ai Jianbo. The saving-energy effect of superhydrophobic surface[J]. Helicopter Technique, 2012(3): 35-40.
[19] Kulinich S, Farhadi S, Nose K, et al. Superhydrophobic surfaces: Are they really ice-repellent?[J]. Langmuir, 2011, 27(1): 25-29.
[20] 阎映弟. 新型超疏水涂层的微纳结构设计及其表面防覆冰作用[D]. 杭州: 浙江大学, 2014. Yan Yingdi. The micro-nano structure design of novel superhydrophobic coatings and their anti-icing & icenhobic properties[D]. Hangzhou: Zhejiang University, 2014.
[21] 霍西恒, 刘鹏, 贾丽杰. 民用客机机翼热气防冰系统问题初探[J]. 民用飞机设计与研究, 2010(4): 16-18. Huo Xiheng, Liu Peng, Jia Lijie. Research of the wing hot air antiicing system for the civil aircraft[J]. Civil Aircraft Design and Research, 2010(4): 16-18.
[22] 袁赫. 飞机电排斥除冰系统研究[D]. 武汉: 华中科技大学, 2010. Yuan He. Study on aircraft electro- expulsive de- icing system[D]. Wuhan: Huazhong University of Science and Technology, 2010.
[23] Broeren A P, Bragg M B. Effect of intercycle ice accretions on airfoil performance[J]. Journal of Aircraft, 2004, 41(1): 165-174.
[24] 杜骞. 电脉冲除冰系统设计研究[D]. 南京: 南京航空航天大学, 2009. Du Qian. Design and research on electro-impulse de-icing system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
[25] 李广超, 何江, 林贵平. 电脉冲除冰(EIDI)技术研究[J]. 航空动力学报, 2011, 26(8): 1728-1735. Li Guangchao, He Jiang, Lin Guiping. Electro-impulse de-icing (EIDI) technology study[J]. Journal of Aerospace Power, 2011, 26(8): 1728-1735.
[26] Kodet A C. Electro-impulse deicing[C]//Proceedings of Southern Tier Technical Conference, 1988. Binghamton, USA: IEEE, 1988: 193-200.
[27] Bernhart W D, Zumwalt G W. Electro-impulse de-icing structural dynamic studiesicing tunnel tests and applications[R]. Reno: AIAA, 1984-0022, 1984.
[28] Zieve P, Huffer B, Ng J. Electromagnetic emissions from a modular low voltage electro-impulse de-icing system[R]. Seattle: AIAA, 1989- 0758, 1989.
[29] Zumwalt G. Electro- impulse de- icing: a status report[R]. Reno: AIAA, 1988-0019, 1988.
[30] Zumwalt G, Friedberg R, Schwartz J. Electro-impulse de-icing research: Fatigue and electromagnetic interference tests[R]. Springfield: Federal Aviation Administration Report. DOT/FAA/CT- 88/27, 1989.
[31] Labeas G N, Diamantakos I D, Sunaric M M. Simulation of the electroimpulse de-icing process of aircraft wings[J]. Journal of Aircraft, 2006, 43(6): 1876-1885.
[32] Li Q Y, Zhu C L, Bai T. Numerical simulation and experimental verification of the electro-impulse de-icing system[R]. Honolulu: AIAA, 2012-1992, 2012.
[33] 李清英, 朱春玲, 白天. 电脉冲除冰系统除冰激励的简化与影响因素[J]. 航空学报, 2012, 33(8): 1384-1393. Li Qingying, Zhu Chunling, Bai Tian. Simplification of de- icing excitation and influential factors of the electro- impulse de- icing system[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1384- 1393.
[34] Möhle E, Haupt M C, Horst P. Coupled magnetic and structural numerical simulation and experimental validation of the electro impulse de-icing[R]. Boston: AIAA, 2013-1494, 2013.
[35] 杨常卫, 张功虎, 孙涛, 等. 黑鹰直升机旋翼桨叶防/除冰系统研究[J]. 直升机技术, 2011(1): 37-44. Yang Changwei, Zhang Gonghu, Sun Tao, et al. Development of black hawk helicopter rotor blade anti-/de- icing system[J]. Helicopter Technique, 2011(1): 37-44.
[36] Petrenko V. Systems and methods for modifying ice adhesion strength: U S Patent 6, 427, 946[P/OL]. (2002-8-6) [2014-10-24]. http://www. google.com/patents/US6027075.
[37] Botura G, Sweet D, Flosdorf D. Development and demonstration of low power electrothermal de-icing system[R]. Reno: AIAA, 2005-1460, 2005.
[38] Strobl T, Storm S, Thompson D, et al. Feasibility study of a hybrid Ice protection system[R]. Atlanta: AIAA, 2014-2060, 2014.
[39] Buschhorn S, Lachman N, Florent R. Shape memory alloy rotor blade deicing[R]. Boston: AIAA, 2013-1915, 2013.
[40] Nagappan N, Golubev V, Nakhla H, et al. On icing control using thermally activated synthetic jets[R]. Dallas: AIAA, 2013-0093, 2013.
[41] Nakhla H, Bourlier A, Nguyen L, et al. High-accuracy simulations of synthetic jets for low-Re flow control[R]. Orlando: AIAA, 2011-469, 2011.
[42] Buschhorn S, Lachman N, Gavin J, et al. Electrothermal icing protection of aerosurfaces using conductive polymer nanocomposites[R]. Boston: AIAA, 2013-1729, 2013.