Exclusive

Multiscale materials computational methods

  • SHI Siqi ,
  • XU Jiwei ,
  • CUI Yanhua ,
  • LU Xiaogang ,
  • OUYANG Chuying ,
  • ZHANG Yanshu ,
  • ZHANG Wenqing
Expand
  • 1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;
    2. Materials Genome Institute, Shanghai University, Shanghai 200444, China;
    3. Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621000, China;
    4. Department of Physics, Jiangxi Normal University, Nanchang 330022, China;
    5. Advanced Manufacturing Technology Center, China Academy of Machinery Science & Technology, Beijing 100083, China

Received date: 2015-04-02

  Revised date: 2015-04-16

  Online published: 2015-05-26

Abstract

Multiscale models and simulations play a significant role in the "Materials Genome Initiative". This article reviews computational methods at spatial scale from quantum to microscopy, mesoscopy, and macroscopy, and at temporal scale from picosecond to nanosecond, and microsecond. The corresponding techniques ranging from first- principles calculation to molecular dynamics, macroscopic thermodynamics/kinetics models and simulations, and finite element methods are introduced.

Cite this article

SHI Siqi , XU Jiwei , CUI Yanhua , LU Xiaogang , OUYANG Chuying , ZHANG Yanshu , ZHANG Wenqing . Multiscale materials computational methods[J]. Science & Technology Review, 2015 , 33(10) : 20 -30 . DOI: 10.3981/j.issn.1000-7857.2015.10.002

References

[1] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.
[2] Zhu L, Liu H Y, Pickard C J, et al. Reactions of xenon with iron and nickel are predicted in the Earth's inner core[J]. Nature Chemistry, 2014, 6(7): 644-648.
[3] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Review B, 1964, 136(3B): 864-871.
[4] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review A, 1965, 140(4A): 1133-1138.
[5] Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method[J]. Physical Review Letters, 1980, 45(7): 566-569.
[6] Perdew J P, Schmidt K. Density functional theory and its applications to materials[M]. New York: American Institute of Physics, 2001.
[7] Perdew J P, Ruzsinszky A, Tao J M, et al. Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits[J]. Journal of Chemical Physics, 2005, 123:1-9.
[8] Car R, Parrinello M. Unified approach for molecular dynamics and density- functional theory[J]. Physical Review Letters, 1985, 55(22): 2471-2474.
[9] Seifert G. A tight- binding density functional theory: An approximate Kohn-Sham DFT Scheme[J]. Journal of Physical Chemistry A, 2007, 111 (26): 5609-5613.
[10] Kohn W, Luttinger J M. Quantum theory of cyclotron resonance in semiconductors: General theory[J]. Physical Review, 1956, 102(4): 1030-1041.
[11] Kolorenc J, Mitas L. Applications of quantum Monte Carlo methods in condensed systems[J]. Reports on Progress in Physics, 2011, 74: 1-28.
[12] Alder B J, Wainwright T E. Studies in molecular dynamics. I. General method[J]. Journal of Chemical Physics, 1959, 31(2): 459-466.
[13] Pictures from LAMMPS simulation[EB/OL]. [2015-01-30].http://lammps. sandia.gov/pictures.html.
[14] Bringa E M, Rosolankova K, Rudd R E, et al. Shock deformation of facecentred- cubic metals on subnanosecond time scales[J]. Nature Materials, 2006, 5:805-809.
[15] Binder K. Application of the monte carlo method in statistical physics, topics in curr phys, Vol 36[M]. 2nd ed. Berlin: Springer-Verlag, 1987.
[16] Ding F, Yakobson B I. Energy-driven kinetic monte carlo method and its application in fullerene coalescence[J]. The Journal of Physical Chemistry Letters, 2014, 5(17): 2922-2926.
[17] Kaufman L, Cohen M. The martensitic transformation in the iron-nickel system[J]. Minerals Metals Materials, 1956, 206: 1393-1401.
[18] Dinsdale A T. SGTE data for pure elements[J]. Calphad, 1991, 15(4): 317-425.
[19] Lu X G, Sundman B, Ågren J. Thermodynamic assessments of the Ni-Pt and Al-Ni-Pt systems[J]. Calphad, 2009, 33(3): 450-456.
[20] Saunders N, Miodownik A P. CALPHAD—a comprehensive guide[M]. Oxford: Pergamon Press, 1998.
[21] Lukas H L, Fries S G, Sundman B. Computational thermodynamics: The calphad method[M]. London: Cambridge University Press, 2007.
[22] Redlich O, Kister A T. Algebraic representation of thermodynamic properties and the classification of solutions[J]. Industrial & Engineering Chemistry, 1948, 40(2): 345-348.
[23] Murnaghan F D. The compressibility of media under extreme pressures[J]. Proceedings of the National Academy of Sciences, 1944, 30(9): 244- 247.
[24] Birch F. Elasticity and constitution of the Earth's interior[J]. Journal of Geophysical Research, 1952, 57(2): 227-286.
[25] Vinet P, Ferrante J, Rose J H, et al. Compressibility of solids[J]. Journal of Geophysical Research, 1987, 92: 9319-9325.
[26] Guillermet A F, Gustafson P, Hillert M. The representation of thermodynamic properties at high pressures[J]. Journal of Physics and Chemistry of Solids, 1985, 46(12):1427-1429.
[27] Tanaka H , Chikazawa M, Kandori K, et al. Influence of thermal treatment on the structure of calcium hydroxyapatite[J]. Physical Chemistry Chemical Physics, 2000, 2: 2647-2650.
[28] Lu X G, Selleby M, Sundman B. Implementation of a new model for pressure dependence of condensed phases in Thermo- Calc[J]. CALPHAD, 2005, 29(1): 49-55.
[29] Brosh E, Makov G, Shneck R Z. Application of CALPHAD to high pressures[J]. CALPHAD, 2007, 31(2): 173-185.
[30] Liu Z K. First-principles Calculations and Calphad modeling of thermodynamics[J]. Journal of Phase Equilibria and Diffusion, 2009, 30: 517-534.
[31] Borgenstam A, Engstrom A, Hoglund L, et al. DICTRA, a tool for simulation of diffusion transformations in alloys[J]. Journal of Phase Equilibria, 2000, 21(3): 269.
[32] Andersson J O, Helander T, Hoglund L, et al. Thermo-Calc and DICTRA, computational tools for materials science[J]. CALPHAD, 2002, 26(2): 273-312.
[33] Wagner R, Kampmann R, Voorhees P W. Homogeneous second phase precipitation[M]//Haasen P. Materials Science and Technology: A Comprehensive Treatment. Weinheim: Wiley-VCH, 1991.
[34] Hughes T J R. The finite element method: Linear static and dynamic finite element analysis[M]. New York: Prentice-Hall, 1987.
[35] Hrennikoff A. Solution of problems of elasticity by the framework method[J]. Journal of applied mechanics, 1941, 8(4): 169-175.
[36] Courant R. Variational methods for the solution of problems of equilibrium and vibrations[J]. Bulletin of the American Mathematical Society, 1943, 49: 1-23.
[37] Feng Kang[EB/OL]. [2015- 01- 31]. http://en.wikipedia.org/wiki/Feng_ Kang.
[38] Landau L D, Lifshitz E M. Course of Theoretical physics, volume 5: Statistical physics third edition[M]. Oxford: Pergamon Press, 1981.
[39] Davidovich L L, Ginzburg V L. Towards the theory of superconductivity[J]. Journal of Experimental and Theoretical Physics, 1950, 20: 1064- 1082.
[40] Cahn J W, Hilliard J E. Free energy of a nonuniform system I: Interfacial free energy[J]. Journal of Chemical Physics, 1958, 28: 258-267.
[41] Kundin J, Siquieri R. Phase-field model for multiphase systems with different thermodynamic factors[J]. Physica D: Nonlinear Phenomena, 2011, 240(6): 459-469.
[42] Yeddu H K, Lookman T, Saxena A. The simultaneous occurrence of martensitic transformation and reversion of martensite[J]. Materials Science and Engineering: A, 2014, 594: 48-51.
[43] Tonks M, Millett P. Phase field simulations of elastic deformation-driven grain growth in 2D copper polycrystals[J]. Materials Science and Engineering: A, 2011, 528(12): 4086-4091.
[44] Vorontsov V A, Shen C, Wang Y, et al. Shearing of γ' precipitates by a<112>dislocation ribbons in Ni-base superalloys: A phase field approach[J]. Acta Materialia, 2010, 58(12): 4110-4119.
[45] Gauberta A, Bouar Y L, Finel A. Coupling phase field and viscoplasticity to study rafting in Ni-base superalloys[J]. Philosophical Magazine, 2010, 90: 375-404.
[46] Li Y L, Hu S Y, Liu Z K, et al. Phase-field model of domain structures in ferroelectric thin films[J]. Applied Physics Letters, 2001, 78: 3878- 3880.
[47] Wu K, Morral J E, Wang Y. A phase field study of microstructural changes due to the Kirkendall effect in two-phase diffusion couples[J]. Acta Materialia, 2001, 49(17): 3401-3408.
[48] Chen L Q. Phase-field method of phase transitions/domain structures in ferroelectric thin films: A review[J]. Journal of the American Ceramic Society, 2008, 91(6): 1835-1844.
[49] Ashby M F, Johnson L. On the generation of dislocations at misfitting particles in a ductile matrix[J]. Philosophical Magazine, 1969, 20(167): 1009-1022.
[50] Geslin P A, Appolaire B, Finel A. Investigation of coherency loss by prismatic punching with a nonlinear elastic model[J]. Acta Materialia, 2014, 71: 80-88.
[51] Landau L D, Lifshitz E M. Course of theoretical physics, volume 5: Statistical physics third edition[M]. Oxford: Pergamon Press, 1981.
[52] Makenas B J, Birnbaum H K. Phase changes in the niobium-hydrogen system I: Accommodation effects during hydride precipitation[J]. Acta Metallurgica, 1980, 28(7): 979-988.
[53] Pollock T M, Allison J E. Integrated computational materials engineering: A transformational discipline for improved competitiveness and national security, committee on integrated computational materials engineering, national research council[M]. Washington, DC: The National Academies Press, 2008.
[54] Karhausen K, Kopp R. Model for integrated process and microstructure simulation in hot forming[J]. Steel Research, 1992, 63: 247-256.
[55] Pietrzyk M, Jedrzejewski J. Identification of parameters in the history dependent constitutive model for steels[J]. CIRP Annals-Manufacturing Technology, 2001, 50(1): 161-164.
[56] Ponthot J P, Kleinermann J P. A cascade optimization methodology for automatic parameter identification and shape/process optimization in metal forming simulation[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41-43): 5472-5508.
[57] Reich Y, Travitzky N. Machine learning of material behaviour knowledge from empirical data[J]. Materials & Design, 1995, 16(5): 251-259.
Outlines

/