[1] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.
[2] Zhu L, Liu H Y, Pickard C J, et al. Reactions of xenon with iron and nickel are predicted in the Earth's inner core[J]. Nature Chemistry, 2014, 6(7): 644-648.
[3] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Review B, 1964, 136(3B): 864-871.
[4] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review A, 1965, 140(4A): 1133-1138.
[5] Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method[J]. Physical Review Letters, 1980, 45(7): 566-569.
[6] Perdew J P, Schmidt K. Density functional theory and its applications to materials[M]. New York: American Institute of Physics, 2001.
[7] Perdew J P, Ruzsinszky A, Tao J M, et al. Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits[J]. Journal of Chemical Physics, 2005, 123:1-9.
[8] Car R, Parrinello M. Unified approach for molecular dynamics and density- functional theory[J]. Physical Review Letters, 1985, 55(22): 2471-2474.
[9] Seifert G. A tight- binding density functional theory: An approximate Kohn-Sham DFT Scheme[J]. Journal of Physical Chemistry A, 2007, 111 (26): 5609-5613.
[10] Kohn W, Luttinger J M. Quantum theory of cyclotron resonance in semiconductors: General theory[J]. Physical Review, 1956, 102(4): 1030-1041.
[11] Kolorenc J, Mitas L. Applications of quantum Monte Carlo methods in condensed systems[J]. Reports on Progress in Physics, 2011, 74: 1-28.
[12] Alder B J, Wainwright T E. Studies in molecular dynamics. I. General method[J]. Journal of Chemical Physics, 1959, 31(2): 459-466.
[13] Pictures from LAMMPS simulation[EB/OL]. [2015-01-30].http://lammps. sandia.gov/pictures.html.
[14] Bringa E M, Rosolankova K, Rudd R E, et al. Shock deformation of facecentred- cubic metals on subnanosecond time scales[J]. Nature Materials, 2006, 5:805-809.
[15] Binder K. Application of the monte carlo method in statistical physics, topics in curr phys, Vol 36[M]. 2nd ed. Berlin: Springer-Verlag, 1987.
[16] Ding F, Yakobson B I. Energy-driven kinetic monte carlo method and its application in fullerene coalescence[J]. The Journal of Physical Chemistry Letters, 2014, 5(17): 2922-2926.
[17] Kaufman L, Cohen M. The martensitic transformation in the iron-nickel system[J]. Minerals Metals Materials, 1956, 206: 1393-1401.
[18] Dinsdale A T. SGTE data for pure elements[J]. Calphad, 1991, 15(4): 317-425.
[19] Lu X G, Sundman B, Ågren J. Thermodynamic assessments of the Ni-Pt and Al-Ni-Pt systems[J]. Calphad, 2009, 33(3): 450-456.
[20] Saunders N, Miodownik A P. CALPHAD—a comprehensive guide[M]. Oxford: Pergamon Press, 1998.
[21] Lukas H L, Fries S G, Sundman B. Computational thermodynamics: The calphad method[M]. London: Cambridge University Press, 2007.
[22] Redlich O, Kister A T. Algebraic representation of thermodynamic properties and the classification of solutions[J]. Industrial & Engineering Chemistry, 1948, 40(2): 345-348.
[23] Murnaghan F D. The compressibility of media under extreme pressures[J]. Proceedings of the National Academy of Sciences, 1944, 30(9): 244- 247.
[24] Birch F. Elasticity and constitution of the Earth's interior[J]. Journal of Geophysical Research, 1952, 57(2): 227-286.
[25] Vinet P, Ferrante J, Rose J H, et al. Compressibility of solids[J]. Journal of Geophysical Research, 1987, 92: 9319-9325.
[26] Guillermet A F, Gustafson P, Hillert M. The representation of thermodynamic properties at high pressures[J]. Journal of Physics and Chemistry of Solids, 1985, 46(12):1427-1429.
[27] Tanaka H , Chikazawa M, Kandori K, et al. Influence of thermal treatment on the structure of calcium hydroxyapatite[J]. Physical Chemistry Chemical Physics, 2000, 2: 2647-2650.
[28] Lu X G, Selleby M, Sundman B. Implementation of a new model for pressure dependence of condensed phases in Thermo- Calc[J]. CALPHAD, 2005, 29(1): 49-55.
[29] Brosh E, Makov G, Shneck R Z. Application of CALPHAD to high pressures[J]. CALPHAD, 2007, 31(2): 173-185.
[30] Liu Z K. First-principles Calculations and Calphad modeling of thermodynamics[J]. Journal of Phase Equilibria and Diffusion, 2009, 30: 517-534.
[31] Borgenstam A, Engstrom A, Hoglund L, et al. DICTRA, a tool for simulation of diffusion transformations in alloys[J]. Journal of Phase Equilibria, 2000, 21(3): 269.
[32] Andersson J O, Helander T, Hoglund L, et al. Thermo-Calc and DICTRA, computational tools for materials science[J]. CALPHAD, 2002, 26(2): 273-312.
[33] Wagner R, Kampmann R, Voorhees P W. Homogeneous second phase precipitation[M]//Haasen P. Materials Science and Technology: A Comprehensive Treatment. Weinheim: Wiley-VCH, 1991.
[34] Hughes T J R. The finite element method: Linear static and dynamic finite element analysis[M]. New York: Prentice-Hall, 1987.
[35] Hrennikoff A. Solution of problems of elasticity by the framework method[J]. Journal of applied mechanics, 1941, 8(4): 169-175.
[36] Courant R. Variational methods for the solution of problems of equilibrium and vibrations[J]. Bulletin of the American Mathematical Society, 1943, 49: 1-23.
[37] Feng Kang[EB/OL]. [2015- 01- 31]. http://en.wikipedia.org/wiki/Feng_ Kang.
[38] Landau L D, Lifshitz E M. Course of Theoretical physics, volume 5: Statistical physics third edition[M]. Oxford: Pergamon Press, 1981.
[39] Davidovich L L, Ginzburg V L. Towards the theory of superconductivity[J]. Journal of Experimental and Theoretical Physics, 1950, 20: 1064- 1082.
[40] Cahn J W, Hilliard J E. Free energy of a nonuniform system I: Interfacial free energy[J]. Journal of Chemical Physics, 1958, 28: 258-267.
[41] Kundin J, Siquieri R. Phase-field model for multiphase systems with different thermodynamic factors[J]. Physica D: Nonlinear Phenomena, 2011, 240(6): 459-469.
[42] Yeddu H K, Lookman T, Saxena A. The simultaneous occurrence of martensitic transformation and reversion of martensite[J]. Materials Science and Engineering: A, 2014, 594: 48-51.
[43] Tonks M, Millett P. Phase field simulations of elastic deformation-driven grain growth in 2D copper polycrystals[J]. Materials Science and Engineering: A, 2011, 528(12): 4086-4091.
[44] Vorontsov V A, Shen C, Wang Y, et al. Shearing of γ' precipitates by a<112>dislocation ribbons in Ni-base superalloys: A phase field approach[J]. Acta Materialia, 2010, 58(12): 4110-4119.
[45] Gauberta A, Bouar Y L, Finel A. Coupling phase field and viscoplasticity to study rafting in Ni-base superalloys[J]. Philosophical Magazine, 2010, 90: 375-404.
[46] Li Y L, Hu S Y, Liu Z K, et al. Phase-field model of domain structures in ferroelectric thin films[J]. Applied Physics Letters, 2001, 78: 3878- 3880.
[47] Wu K, Morral J E, Wang Y. A phase field study of microstructural changes due to the Kirkendall effect in two-phase diffusion couples[J]. Acta Materialia, 2001, 49(17): 3401-3408.
[48] Chen L Q. Phase-field method of phase transitions/domain structures in ferroelectric thin films: A review[J]. Journal of the American Ceramic Society, 2008, 91(6): 1835-1844.
[49] Ashby M F, Johnson L. On the generation of dislocations at misfitting particles in a ductile matrix[J]. Philosophical Magazine, 1969, 20(167): 1009-1022.
[50] Geslin P A, Appolaire B, Finel A. Investigation of coherency loss by prismatic punching with a nonlinear elastic model[J]. Acta Materialia, 2014, 71: 80-88.
[51] Landau L D, Lifshitz E M. Course of theoretical physics, volume 5: Statistical physics third edition[M]. Oxford: Pergamon Press, 1981.
[52] Makenas B J, Birnbaum H K. Phase changes in the niobium-hydrogen system I: Accommodation effects during hydride precipitation[J]. Acta Metallurgica, 1980, 28(7): 979-988.
[53] Pollock T M, Allison J E. Integrated computational materials engineering: A transformational discipline for improved competitiveness and national security, committee on integrated computational materials engineering, national research council[M]. Washington, DC: The National Academies Press, 2008.
[54] Karhausen K, Kopp R. Model for integrated process and microstructure simulation in hot forming[J]. Steel Research, 1992, 63: 247-256.
[55] Pietrzyk M, Jedrzejewski J. Identification of parameters in the history dependent constitutive model for steels[J]. CIRP Annals-Manufacturing Technology, 2001, 50(1): 161-164.
[56] Ponthot J P, Kleinermann J P. A cascade optimization methodology for automatic parameter identification and shape/process optimization in metal forming simulation[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41-43): 5472-5508.
[57] Reich Y, Travitzky N. Machine learning of material behaviour knowledge from empirical data[J]. Materials & Design, 1995, 16(5): 251-259.