[1] Hanak J J. The "multiple-sample concept" in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems[J]. Journal of Materials Science, 1970, 5(11): 964-971.
[2] 项晓东, 汪洪, 向勇, 等. 组合材料芯片技术在新材料研发中的应用案例[J]. 科技导报, 2015, 33(10): 64-78. Xiang Xiaodong, Wang Hong, Xiang Yong, et al. Science & Technology Review, 2015, 33(10): 64-78.
[3] Xiang X D, Sun X, Briceno G, et al. A combinatorial approach to materials discovery[J]. Science, 1995, 268(5218): 1738-1740.
[4] Potyrailo R, Rajan K, Stoewe K, et al. Combinatorial and high-throughput screening of materials libraries: Reviews of state of the art[J]. ACS Combinatorial Science, 2011, 13(6): 579-633.
[5] Senkan S M. Combinatorial heterogeneous catalysis: A new path in an old field[J]. Angewandte Chemie International Edition, 2001, 40(2): 312-329.
[6] Senkan S M. High-throughput screening of solid-state catalyst libraries[J]. Nature, 1998, 394(6691): 350-353.
[7] Wang J, Yoo Y, Gao C, et al. Identification of a blue photoluminescent composite materials from a combinatorial library[J]. Science, 1998, 279 (5357): 1712-1714.
[8] Sun X D, Wang K A, Yoo Y, et al. Solution-phase sytnesis of luminescent materials libraries[J]. Advenced Materials, 1997, 9(13): 1046-1049.
[9] Zhao J C, Jackson M R, Peluso L A, et al. A diffusion multiple approach for the accelerated design of structural materials[J]. MRS bulletin, 2002, 27(4): 324-329.
[10] Li J, Duewer F, Gao C, et al. Electro- optic measurement of the ferroelectric- paraelectric boundary in Ba1- xSrxTiO3 materials chips[J]. Applied Physics Letters, 2000, 76(6): 769-771.
[11] Kau D, Tang S, Karpov I V, et al. A stackable cross point phase change memory[C]. Electron Devices Meeting (IEDM), 2009 IEEE International, Shanghai, November 20-22, 2009.
[12] Chang H, Gao C, Takeuchi Y, et al. Combinatorial synthesis and hig throughput evaluation of ferroelectric/dielectric thin- film libraries for microwave applications[J]. Applied Physics Letters, 1998, 72(17): 2185- 2187.
[13] Yoo Y K, Duewer F, Fukumura T, et al. Strong correlation between high-temperature electronic and low-temperature magnetic ordering in La1-xCaxMnO3 continuous phase diagram[J]. Physical Review B, 2001, 63 (22): 224421.
[14] Mao S S. High throughput growth and characterization of thin film materials[J]. Journal of Crystal Growth, 2013, 379: 123-130.
[15] Lewis G J, Sachtler J W A, Low J J, et al. High throughput screening of the ternary LiNH2-MgH2-LiBH4 phase diagram[J]. Journal of Alloys and Compunds, 2007, 446: 355-359.
[16] Otani M, Lowhorn N D, Schenck P K, et al. A high- throughput thermoelectric power- factor screening tool for rapid construction of thermoelectric property diagrams[J]. Applied Physics Letters, 2007, 91 (13): 132102.
[17] Noda S, Sugime H, Osawa T, et al. A simple combinatorial method to discover Co- Mo binary catalysts that grow vertically aligned singlewalled carbon nanotubes[J]. Carbon, 2006, 44(8): 1414-1419.
[18] Chen L, Bao J, Gao C, et al. Combinatorial synthesis of insoluble oxide library from ultrafine/nano particle suspension using a drop-ondemand inkjet delivery system[J]. Journal of Combinatorial Chemistry, 2004, 6(5): 699-702.
[19] Luo Z L, Geng B, Bao J, et al. Parallel solution combustion synthesis for combinatorial materials studies[J]. Journal of Combinatorial Chemistry, 2005, 7(6): 943-946.
[20] 高琛, 罗震林, 鲍骏, 等. PbTiO3-CoFe2O4磁电材料样品库的同步辐射 X射线衍射结构分析[J]. 中国科学技术大学学报, 2007, 37(4/5): 575- 577. Gao Chen, Luo Zhenlin, Bao Jun, et al. Structure analysis of PbTiO3- CoFe2O4 multiferroics materials library using synchrotron radiation combinatorial high resolution X-ray diffraction technique[J]. Journal of University of Science and Technology of China, 2007, 37(4/5): 575-577.
[21] Liu Q. High throughput screening of inorganic functional materials[R]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Science, 2012.
[22] Na N, Zhang S, Wang X, et al. Cataluminescence-based array imaging for high-throughput screening of heterogeneous catalysts[J]. Analytical Chemistry, 2009, 81(6): 2092-2097.
[23] Gao K, Yuan L, Wang L. High-throughput selection for heterogeneous catalysts[J]. Journal of Combinatorial Chemistry, 2006, 8(2): 247-251.
[24] Potyrailo R A, Mirsky V M, Combinatorial and high- throughput development of sensing materials: The first 10 years[J]. Chemical Reviews, 2008, 108(2): 770-813.
[25] Kennedy K, Stefanskey T, Davy G, et al. Rapid method for determining ternary-alloy phase diagrams[J]. Jouranl of Applied Physics, 1965, 36 (12): 3808-3810.
[26] Sun X D, Gao C, Wang J, et al. Identification and optimization of advanced phosphors using combinatorial libraries[J]. Applied Physics Letters, 1997, 70(25): 3353-3355.
[27] Sun X D, Xiang X D. New phosphor (Gd2-xZnx)O3-σ: Eu3+ with high luminescent efficiency and superior chromaticty[J]. Applied Physics Letters, 1998, 72(5): 525-527.
[28] BricenoG,ChangH,SunX,etal.Aclassofcobaltoxide magnetoresistance materials discovered with combinatorial synthesis[J]. Science, 1995, 270 (5234): 273-275.
[29] Jin Z, Murakami M, Fukumura T, et al. Combinatorial laser MBE synthesis of 3d ion doped epitaxial ZnO thin films[J]. Journal of Crystal Growth, 2000, 214: 55-58.
[30] Jin Z, Fukumura T, Kawasaki M, et al. High throughput fabrication of transition- metal doped epitaxial ZnO thin films: A series of oxidediluted magnetic semiconductors and their properties[J]. Applied Physics Letters, 2001, 78(24): 3824-3826.
[31] Chang H, Takeuchi I, Xiang X D. A low- loss composition region identified from a thin-film composition spread of (Ba1- x- ySrxCay)TiO3[J]. Applied Physics Letters, 1999, 74(8): 1165-1167.
[32] Yoo Y K, Duewer F, Yang H, et al. Room-temperature electronic phase transitions in the continuous phase diagram of perovskite manganites[J]. Nature, 2000, 406(6797): 704-708.
[33] Yoo Y, Xue Q, Chu Y S, et al. Indentifacation of amorphous phases in the Fe- Ni- Co ternary alloy system using continuous phase diagram materials chips[J]. Intermetallics, 2006, 14(3): 241-247.
[34] Takeuchi I, Chang K, Sharma R P, et al. Microstructural properties of (Ba,Sr)TiO3 films fabricated from BaF2/SrF2/TiO2 amorphous multilayers using the combinatorial precursor method[J]. Journal of Applied Physics, 2001, 90(5): 2474-2478.
[35] Sun T X. Combinatorial materials synthesis[M]. Xiang X D, Takeuchi I, ed. New York: Dekker, 2003: 141-176.
[36] Liu X, Shen Y, Yang R, et al. Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration[J]. Nano Letters, 2012, 12(11): 5733-5739.
[37] 王薪, 朱礼龙, 方姣, 等. 基于"材料基因组工程"的3种方法在镍基高温合金中的应用[J]. 科技导报, 2015, 33(10): 79-86. Wang Xin, Zhu Lilong, Fang Jiao, et al. Applications of "Materials Genome Engineering" based methods in Nickel- based superalloys[J]. Sceince & Technology Reviews, 2015, 33(10): 79-86.
[38] 赵继成. 材料基因组计划中的高通量实验方法[J]. 科学通报, 2013, 58 (35): 3647-3655. Zhao Jicheng. High throughput experimental Tools of Materials Genome Initiative[J]. Chinese Science Bulletin, 2013, 58(35): 3647-3655.
[39] McCluskey P J, Zhao C, Kfir O, et al. Precipitation and thermal fatigue in Ni- Ti- Zr shape memory ally thin films by combinatorial nanocalorimetry[J]. Acta Materialia, 2011, 59(13): 5116-5124.
[40] Kim H J, Han J H, Kaiser R, et al. High-throughput analysis of thinfilm stresses using arrays of micromachined cantilever beams [J]. Review of Scientific Instruments, 2008, 79(4): 045112.
[41] Gregoire J M, McCluskey P J, Dale D, et al. Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses[J]. Scripta Materialia, 2012, 66(3/4): 178-181.
[42] Wang N, Zhang X, Chen B, et al. Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source[J]. Lab on Chip, 2012, 12(20): 3983-3990.
[43] Bergh S, Guan S, Hagemeyer A, et al. Gas phase oxidation of ethane to acetic acid using high- throughput screening in a massively parallel microfluidic reactor system[J]. Applied Catalysis A: General, 2003, 254 (1): 67-76.
[44] Guram A, Hagemeyer A, Lugmair C G, et al. Application of high throughput screening to heterogeneous liquid and gas phase oxidation catalysis[J]. Advance Synthesis & Catalysis, 2004, 346(2/3): 215-230.
[45] Baufeld B, Van der Biest O, Gault R. Additive manufacturing of Ti-6Al- 4V components by shaped metal deposition: Microstructure and mechanical properties[J]. Materials & Design, 2010, 31(Suppl 1): S106- S111.
[46] Schwendner K I, Banerjee R, Collins P C, et al. Direct laser deposition of alloys from elemental powder blends[J]. Scripta Materialia, 2001, 45 (10): 1123-1129.
[47] Arnold C B, Serra P, Pique A. Laser direct-write techniques for printing of complex materials[J]. MRS Bulletin, 2007, 32(1): 23-31.
[48] Nian Q, Wang Y, Yang Y, et al. Direct laser writing of nanodiamond films form graphite under ambient conditions[J]. Scientific Reports, 2014, 4: 6612.
[49] Methodology of Accelerated Metallurgy[EB/OL]. [2012-01-19]. http:// www.accmet-project.eu/methodology.html.
[50] Xiang X D. High throughput synthesis and screening for functional materials[J]. Applied Surface Science, 2004, 223(1-3): 54-61.
[51] Takeuchi I, Yang W, Chang K S, et al. Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads[J]. Journal of Applied Physics, 2003, 94(11): 7336.
[52] Reeves W H, Skryabin D V, Biancalana F, et al. Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres[J]. Nature, 2003, 424(6948): 511-515.
[53] Chen C M, Liu X Q, Li M Q, et al. Combinatorial materials synthesis [M]. Xiang X D, Takeuchi I, ed. New York: Dekker, 2003: 177.
[54] Kubota H, Takahashi R, Kim T W, et al. Combinatorial synthesis and luminescent characteristics of RECa4O(BO3)3 epitaxial thin films[J]. Applied Surface Science, 2004, 223(1): 241-244.
[55] Wei T, Xiang X D, Wallace Freedman W G, et al. Scanning tip microwave near-field microscope[J]. Applied Physics Letters, 1996, 68 (24): 3506-3508.
[56] Gao C, Duewar F, Xiang X D. Quantitative microwave evanescent microscopy[J]. Applied Physics Letters, 1999, 75(19): 3005-3007.
[57] Wang G, Xiang X D. Combinatorial materials synthesis[M]. Xiang X D, Takeuchi I. New York: Dekker, 2003: 329.
[58] McCluskey P J, Vlassak J J. Combinatorial nanocalorimetry[J]. Journal of Materials Research, 2011, 25(11): 2086-2100.
[59] Lee D, Sim G, Xiao K, et al. Scanning AC nanocalorimetry study of Zr/B reactive multilayers[J]. Journal of Applied Physics, 2013, 114(21): 214902.
[60] Huxtable S, Cahill D G, Fauconnier V, et al. Thermal conductivity imaging at micrometre- scale resolution for combinatorial studies of materials[J]. Nature Materials, 2004, 3(5): 298-301.
[61] VersaSCAN electrochemical scanning system[EB/OL]. [2015- 01- 28]. http://www.princetonappliedresearch.com/Our-Products/Electrochemical -Scanning-System/index.aspx.
[62] Frick C P, Lang T W, Spark K, et al. Stress- induced martensitic transformations and shape memory at nanometer scales[J]. Acta Materillia, 2006, 54(8): 2223-2234.
[63] Uchic M D, Dimiduk D M, Florando J N, et al. Sample dimensions influence strength and crystal plasticity[J]. Science, 2004, 305(5686): 986-989.
[64] Pan D, Chen M W, Wright P K, et al. Evolution of a diffusion aluminide bond coat for thermal barrier coatings during thermal cycling[J]. Acta Materillia, 2003, 51(8): 2205-2217.
[65] Haque M A, Saif M T A. A review of MEMS- based microscale and nanoscale tensile and bending testing[J]. Society for Experimental Mechanics, 2003, 43(3): 248-255.
[66] Vlassak J J, Nix W D. A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films[J]. Journal of Materials Research, 1992, 7(12): 3242-3249.
[67] Martin Y, Wickramasinghe H K. Magnetic imaging by ″force microscopy″ with 1000 Å resolution[J]. Applied Physics Letters, 1987, 50(20): 1455.
[68] Oral A, Bending S J, Henini M. Scanning hall probe microscopy of superconductors and magnetic materials[J]. Applied Physics Letters, 1996, 69(9): 1202.
[69] Silva T J, Schultz S. A scanning near-field optical microscope for the imaging of magnetic domains in reflection[J]. Review of Science Instruments, 1996, 67(3): 715.
[70] Fleet E F, Chatraphorn S, Wellstood F C, et al. Closed-cycle refrigeratorcooled scanning SQUID microscope for room-temperature samples[J]. Review of Science Instruments, 2001, 72(8): 3281.
[71] Zhao J C, Xu Y, Hartmann H. Measurement of an iso-curie temperature line of a CoCrMo solid solution by magnetic force microscopy imaging on a diffusion multiple[J]. Advanced Engineering Materials, 2012, 15 (5): 321-324.
[72] Yashen Tech High Throughput R&D Technology & Systems[EB/OL].[2015-01-28]. http://www.yashentech.com/en/pages/htrd.htm.
[73] Wang H Z. Original position statistic distribution analysis(OPA)-novel statistic characterization method of different chemical compositions and its states of the materials[J]. Materials Science Forum, 2007, 539: 4446- 4451.
[74] 陈吉文, 袁良经, 陈玉红, 等. 激光原位统计分布分析技术[J]. 冶金分析, 2010, 30(增1): 94-98. Chen Jiwen, Yuan Liangjing, Chen Yuhong, et al. Original position statistic distribution analysis by laser induced breakdown spectrometry[J]. Metallurgical Analysis, 2010, 30(Suppl 1): 94-98.
[75] 陈玉红, 袁良经, 王海舟. 球扁钢激光剥蚀-电感耦合等离子体质谱原位统计分布分析研究[J]. 冶金分析, 2009, 29(9): 1-5. Chen Yuhong, Yuan Liangjing, Wang Haizhou. Investigation on original statistic distribution analysis of flat- bulb steel by laser ablation inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2009, 29(9): 1-5.
[76] 王海舟. 原位统计分布分析——材料研究及质量判据的新技术[J]. 中国科学: B辑, 2002, 32(6): 481-485. Wang Haizhou. Original position statistic distribution analysis: A new technique of research and quality criterion of materials[J]. Science in China: Series B, 2002, 32(6): 481-485.
[77] Li D, Wang H. Original position statistic distribution analysis for the sulfides in gear steels[J]. ISIJ International, 2014, 54(1): 160-164.
[78] 罗倩华, 李冬玲, 王海舟, 等. 不锈钢连铸板坯横截面夹杂物的原位统计分布分析[J]. 冶金分析, 2013, 33(12): 1-7. Luo Qianhua, Li Donglin, Wang Haizhou, et al. Original position statistic distribution analysis for inclusion of cross-section of stainless steel continuous casting slab[J]. Metallurgical Analysis, 2013, 33(12): 1- 7.
[79] 李冬玲, 文志旻, 高永, 等. 优质碳素结构钢圆坯的原位统计分布表征与其微观组织及力学性能的相关性研究[J]. 矿冶,2013, 22(增1): 107-111. Li Dongling, Wen Zhigmin, Gao Yong, et al. Study on the correlation of original position statistic distribution analysis, micro- structure and mechanical properties of carbon structural steel round billet[J]. Minig and Metallurgy, 2013, 22(Suppl 1): 107-111.
[80] 袁良经, 于雷, 韩美, 等. 中低合金钢冲击断口表面的激光剥蚀电感耦合等离子体质谱原位统计分布分析[J]. 冶金分析, 2010, 30(6): 1- 6. Yuan Liangjing, Yu Lei, Han Mei, et al. Original position statistic distribution analysis of impact fracture surface of medium and low alloy steel by laser ablation inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2010, 30(6): 1-6.
[81] Isaacs E D, Marcus M, Aeppli G, et al. Synchrotron X-ray microbeam diagnostics of combinatorial synthesis[J]. Applied Physics Letters, 1998, 73(13): 1820-1822.
[82] Gregoire J M, Van Campen D G, Miller C E, et al. High-throughput synchrotron X- ray diffraction for combinatorial phase mapping[J]. Journal of Synchrotron Radiation, 2014, 21(6): 1262-1268.
[83] Xiang X D. High throughput approaches for combinatorial materials science based on synchrotron light source[R]. Beijing: China Building Materials Academy, 2013.
[84] Xiang X D. The in- situ, real time, and high throughput study on combinatorial materials chips[R]. Beijing: China Building Materials Academy, 2014.
[85] Thompson P, Cox D E, Hatings J B. Rietveld refinement of Debye- Scherrer synchrotron X- ray data from Al2O3[J]. Journal of Applied Crystallography, 1987, 20(2): 79-83.
[86] Burnley P, Synchrotron X-ray diffraction[EB/OL]. (2013-09-16) [2015- 01- 28]. http://serc.carleton.edu/NAGTWorkshops/mineralogy/mineral_ physics/synchrotron_xrd.html.
[87] Ferrell R E. Applicability of energy-dispersive X-ray powder diffractometry to determinative mineralogy[J]. The American Mineralogist, 1971, 56(9/10): 1822-1831.
[88] Giessen B C, Gordon G E. X-ray diffraction: New high-speed technique based on X-ray spectrography[J]. Science, 1968, 159(3818): 973-975.