Exclusive

Materials-genome approach speeds up optimization of thermoelectric materials

  • SHI Xun ,
  • YANG Jiong ,
  • CHEN Lidong ,
  • YANG Jihui ,
  • ZHANG Wenqing
Expand
  • 1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
    2. Materials Science and Engineering Department, University of Washington, Seattle 98195, USA;
    3. Materials Genome Institute, Shanghai University, Shanghai 200444, China

Received date: 2015-04-10

  Revised date: 2015-04-20

  Online published: 2015-05-26

Abstract

The method of Materials Genome Initiative greatly speeds up the optimization of thermoelectric materials. Based on theoretical calculations and materials' database, this approach rapidly finds out the important factors that affect materials' properties, which can be used in the study of current materials by providing helpful directions and guidance. In this work, filled skutterudites and diamond-like compounds were selected as two examples to demonstrate how Materials Genome Initiative speeds up the optimization of thermoelectric properties. Starting from perspectivesof electron and phonon transport, this method can easily find out a few best chemical compositions from hundreds (or thousands) of possibilities to realize high thermoelectric performance. This work demonstrates that thermoelectric material is a typical example that can use the materials genome approachto speed up experimental study.

Cite this article

SHI Xun , YANG Jiong , CHEN Lidong , YANG Jihui , ZHANG Wenqing . Materials-genome approach speeds up optimization of thermoelectric materials[J]. Science & Technology Review, 2015 , 33(10) : 60 -63 . DOI: 10.3981/j.issn.1000-7857.2015.10.005

References

[1] 史迅, 席丽丽, 杨炯, 等. 热电材料研究中的基础物理问题[J]. 物理, 2011, 40(11): 710-718. Shi Xun, Xi Lili, Yang Jiong, et al. Basic physics in thermoelectric[J]. Physics, 2011, 40(11): 710-718.
[2] Goldsmid H J. Electronic refrigeration[M]. London: Pion Limited, 1986.
[3] Yang J, Li H, Wu T, et al. Evaluation of Half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties[J]. Advanced Functional Materials, 2008, 18(19): 2880-2888.
[4] 席丽丽, 杨炯, 史迅, 等. 填充方钴矿热电材料: 从单填到多填[J]. 中国科学: 物理学力学天文学, 2011, 41(6): 706-728. Xi Lili, Yang Jiong, Shi Xun, et al. Filled skutterudites: From single to multiple filling[J]. Scientia Sinica Physica, Mechanica & Astronomica, Scientia Sinica Physica, Mechanica & Astronomica, 2011, 41(6): 706- 728.
[5] Shi X, Zhang W, Chen L D, et al. Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites[J]. Physical Review Letters, 2005, 95(18): 185503.
[6] Pei Y Z, Chen L D, Zhang W, et al. Synthesis and thermoelectric properties of KyCo4Sb12[J]. Applied Physics Letters, 2006, 89(22): 221107.
[7] Pei Y Z, Yang J, Chen L D, et al. Improving thermoelectric performance of caged compounds through light-element filling[J]. Applied Physics Letters, 2009, 95(4): 042101.
[8] Yang J, Zhang W, Bai S Q, et al. Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce, and Sr) [J]. Applied Physics Letters, 2007, 90(19):192111.
[9] Shi X, Bai S Q, Xi L, et al. Realization of high thermoelectric performance in n-type partially filled skutterudites[J]. Journal of Material Research, 2011, 26(15): 1745-1754.
[10] Xi L, Yang J, Zhang W, et al. Anomalous dual- element filling in partially filled skutterudites[J]. Journal of the American Chemical Society, 2009, 131(15): 5560-5563.
[11] Shi X, Kong H, Li C P, et al. Low thermal conductivity and high thermoelectric figure of meritin n- type BaxYbyCo4Sb12 double- filled skutterudites[J]. Applied Physics Letters, 2008, 92(18): 182101.
[12] Bai S Q, Pei Y Z, Chen L D, et al. Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12[J]. Acta Materialia, 2009, 57(11): 3135-3139.
[13] Shi X, Yang J, Salvador J R, et al. Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. Journal of the American Chemical Society, 2011, 133(20): 7837-7846.
[14] Liu R, Xi L, Liu H, et al. Ternary compound CuInTe2: A promising thermoelectric material with diamond-like structure[J]. Chemical Communications, 2012, 48(32): 3818-3820.
[15] Zhang J, Liu R, Cheng N, et al. High- performance pseudocubic thermoelectric materials from non- cubic chalcopyrite compounds[J]. Advanced Materials, 2014, 26(23): 3848-3853.
[16] Sales B C, Mandrus D, Williams R K. Filled skutterudite antimonides: A new class of thermoelectric materials[J]. Science, 1996, 272(5266): 1325-1328.
[17] Plirdpring T, Kurosaki K, Kosuga A, et al. Chalcopyrite CuGaTe2: A high- efficiency bulk thermoelectric material[J]. Advanced Materials, 2012, 24(27): 3622-3626.
Outlines

/