Productivity prediction model and analysis of horizontal well in fractured heavy oil reservoir

  • GAO Ying ,
  • ZHU Weiyao ,
  • QIN Shenggao ,
  • YUE Ming ,
  • ZHANG Xueling ,
  • LIANG Shoucheng
  • 1. School of Civil & Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2. Postdoctoral Program of China Center for Industrial Security Research, Beijing Jiaotong University, Beijing 100044, China;
    3. Sinopec International Petroleum Exploration and Production Corporation, Beijing 100029, China;
    4. School of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
    5. CNOOC Research Institute, Beijing 100028, China

Received date: 2015-04-21

  Revised date: 2015-05-04

  Online published: 2015-06-11


Based on the dual fractal dimension in the fractal theory, the linear density of fractures and the equivalent permeability are characterized by the fractal dimensions of the fracture width and the tortuosity. The seepage field around the horizontal well bore is divided into two regions: the inner seepage region and the outer elliptical nonlinear seepage region. A mathematical model for the two-region coupling steady flow is established based on the conservation law of mass and the motion equation, and the productivity equation is obtained. It is shown that the larger the fractal dimension of the fracture width, the greater the linear density of the fractures, and the larger the equivalent permeability. The greater the tortuosity fractal dimension, the lower the equivalent permeability. Increasing the horizontal well length can have a great impact on the productivity improvement. As the power- law exponent increases, the influence on the productivity of the horizontal well grows, when the power-law exponent n is greater than 0.75. The increase of the threshold pressure gradient leads to a larger decrease rate of the productivity.

Cite this article

GAO Ying , ZHU Weiyao , QIN Shenggao , YUE Ming , ZHANG Xueling , LIANG Shoucheng . Productivity prediction model and analysis of horizontal well in fractured heavy oil reservoir[J]. Science & Technology Review, 2015 , 33(11) : 34 -38 . DOI: 10.3981/j.issn.1000-7857.2015.11.005


[1] 林毅, 王铭宝, 雷平. 水平井在草古1潜山裂缝性稠油油藏开发中的应用[J]. 特种油气藏, 2000, 7(4): 24-26. Lin Yi, Wang Mingbao, Lei Ping. Application of horizontal well in developing Caogu 1 buried-hill fractured heavy oil reservoir[J]. Special Oil & Gas Reservoirs, 2000, 7(4): 24-26.
[2] 陈民锋, 赵晶, 张贤松, 等. 低渗透稠油油藏水平井极限动用范围[J]. 中国石油大学学报: 自然科学版, 2014, 38(2): 103-108. Chen Minfeng, Zhao Jing, Zhang Xiansong, et al. Limit drainage radius of horizontal wells in low- permeability heavy oil reservoirs[J]. Journal of China University of Petroleum: Nature Science Edition, 2014, 38(2): 103- 108.
[3] Tankersley T H, Waite M W. Reservoir modeling for horizontal well exploitation of a Giant heavy oil field[C]. SPE International Thermal Operations and Heavy Oil Symposium and International Horizontal Well Technology Conference, Calgary, Alberta, Canada, November 4-7, 2002.
[4] Mohammadpoor M, Torabi F. An extensive review on the effective sequence of heavy oil recovery[C]. SPE Heavy Oil Conference Canada, Calgary, Alberta, Canada, June 12-14, 2012.
[5] 牟宝珍, 唐帅. 双水平井SAGD开发稠油油藏界限标准[J]. 科技导报, 2014, 32(11): 71-76. Mou Baozhen, Tang Shuai. Threshold standards in heavy oil reservoir exploitation using steam assisted gravity drainage with dual- horizontal wells[J]. Science & Technology Review, 2014, 32(11): 71-76.
[6] 郑舰. 王庄油田特超稠油油藏渗流机理与开发技术研究[D]. 北京: 中国地质大学(北京), 2013. Zheng Jian. Study on seepage mechanism and development of technology for super heavy oil in Wangzhuang Oilfield[D]. Beijing: China University of Geosciences, 2013.
[7] 张凯, 李阳, 王琳娜, 等. 稠油流变特性实验研究[J]. 油气地质与采收率, 2007, 14(5): 91-94. Zhang Kai, Li Yang, Wang Linna, et al. Experimental study on rheological characteristics of heavy oil[J]. Petroleum Geology and Recovery Efficiency, 2007, 14(5): 91-94.
[8] 帅媛媛, 王晓冬, 孙挺, 等. 非牛顿幂律流体水平井产能分析方法[J]. 岩性油气藏, 2007, 19(3): 123-125. Shuai Yuanyuan, Wang Xiaodong, Sun Ting, et al. Productivity analysis of horizontal well with non-Newtonian power law fluid[J]. Lithologic Reservoirs, 2007, 19(3): 123-125.
[9] Vongvuthipornchai S, Raghavan R. Well test analysis of data dominated by storage and skin: Non-newtonian power-law fluids[J]. SPE Formation Evaluation, 1987, 2(4): 618-628.
[10] 王毅忠, 袁士义, 宋新民, 等. 大港油田枣35块火成岩裂缝性稠油油藏采油机理数值模拟研究[J]. 石油勘探与开发, 2004, 31(4): 105-107. Wang Yizhong, Yuan Shiyi, Song Xinmin, et al. Recovery mechanism simulation for the fractured igneous heavy oil reservoir of the Block Zao 35, Dagang Oilfield[J]. Petroleum Exploration and Development, 2004, 31(4): 105-107.
[11] 郭玲玲, 刘慧卿, 王庆, 等. 裂缝性稠油油藏蒸汽驱复合三区试井模型研究[J]. 油气井测试, 2009, 18(6): 14-17, 21. Guo Lingling, Liu Huiqing, Wang Qing, et al. Research on composite three- region well test model for steam driving in heavy oil fissured reservoirs[J]. Well Testing, 2009, 18(6): 14-17, 21.
[12] 冯阵东, 戴俊生, 邓航, 等. 利用分形几何定量评价克拉2气田裂缝[J]. 石油与天然气地质, 2011, 32(54): 928-933. Feng Zhendong, Dai Junsheng, Deng Hang, et al. Quantitative evaluation of fractures with fractal geometry in Kela-2 gas field[J]. Oil & Gas Geology, 2011, 32(54): 928-933.
[13] 孟庆峰, 侯贵廷, 潘文庆, 等. 岩层厚度对碳酸盐岩构造裂缝面密度和分形分布的影响[J]. 高校地质学报, 2011, 17(3): 462-468. Meng Qingfeng, Hou Guiting, Pan Wenqing, et al. Layer thickness controls on surface density and fractal dimension of structural factures in Carbonate Strata[J]. Geological Journal of China Universities, 2011, 17 (3): 462-468.
[14] 张雪龄, 朱维耀, 薛成国, 等. 基于分形理论的裂缝稠油油藏蒸汽驱温度分布计算[J]. 科技导报, 2014, 32(16): 49-53. Zhang Xueling, Zhu Weiyao, Xue Chengguo, et al. Heating distribution calculation of steam flooding in fractured heavy oil reservoir based on fractal theory[J]. Science & Technology Review, 2014, 32(16): 49-53.