Articles

Track planning for unmanned aerial vehicles based on improved PH curves

  • LIU Yonglan, LI Weimin, XIAO Jinke, LÜ Chengzhong, XU Wei
Expand
  • Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China

Received date: 2014-12-15

  Revised date: 2015-03-03

  Online published: 2015-06-11

Abstract

Track planning is one important factor of UAV mission planning. To aim at the shortage currently existing in track planning, a method of track planning based on improved PH curves is proposed. The characteristic of PH curves' continuous curvature is combined with the fast search of particle swarm optimization algorithm, by which choosing PH curves' control point is optimized. The optimal PH path that avoids the obstacles in the environment meets the constraint of maximum curvature, and continuous curvature can be obtained quickly. Simulation results show the validity of the method.

Cite this article

LIU Yonglan, LI Weimin, XIAO Jinke, LÜ Chengzhong, XU Wei . Track planning for unmanned aerial vehicles based on improved PH curves[J]. Science & Technology Review, 2015 , 33(11) : 69 -74 . DOI: 10.3981/j.issn.1000-7857.2015.11.012

References

[1] 张得舒, 黄长强, 丁达理, 等. 基于A*算法的无人机攻击轨迹解算[J]. 电光与控制, 2011, 18(3): 18-20. Zhang Deshu, Huang Changqiang, Ding Dali, et al. Attacking track calculation of UAVs based on A* algorithm[J]. Electronics Optics & Control, 2011, 18(3): 18-20.
[2] 华珊珊. 基于遗传退火算法的无人机航路规划[J]. 计算机测量与控制, 2013, 21(3): 712-715. Hua Shanshan. Simulation of genetic annealing algorithm for route planning of unmanned aerial vehicle[J]. Computer Measurement & Control, 2013, 21(3): 712-715.
[3] 猊天权, 王建东, 刘以安. 交叉粒群算法在无人机航路规划中的应用[J]. 系统工程与电子技术, 2011, 33(4): 806-810. Ni Tianquan, Wang Jiandong, Liu Yi'an. Application of particle swarm algorithm in route planning of UAV[J]. Systems Engineering and Electronics, 2011, 33(4): 806-810.
[4] Tsourdos A, White B, Shanmugavel M. 无人机协同路径规划[M]. 祝小平, 周洲, 王怿, 译. 北京: 国防工业出版社, 2013. Tsourdos A, White B, Shanmugavel M. Cooperative path planning of unmanned aerial vehicles[M]. Zhu Xiaoping, Zhou Zhou, Wang Yi, tran. Beijing: National Defence Industry Press, 2013.
[5] 陈小双, 翟为刚, 赵万里. 基于粒子群优化算法的无人机航迹规划[J]. 现代计算机, 2011, 10(25): 8-11. Chen Xiaoshuang, Zhai Weigang, Zhao Wanli. Route planning for unmanned aerial vehicles based on the particle swarm optimization[J]. Modern Computer, 2011, 10(25): 8-11.
[6] 王新增, 慈林林, 李俊山, 等. 基于改进粒子群优化算法的无人机实时航迹规划[J]. 微电子学与计算机, 2011, 28(4): 87-90. Wang Xinzeng, Ci Linlin, Li Junshan, et al. Real-time route planning for UAV based on improved PSO algorithm[J]. Microelectronics & Computer, 2011, 28(4): 87-90.
[7] 王怿, 祝小平, 周洲. 基于PH曲线的无人机路径规划算法[J]. 计算机仿真, 2013, 30(3): 76-79. Wang Yi, Zhu Xiaoping, Zhou Zhou. Path planning based on PH curves for unmanned aerial vehicles[J]. Computer Simulation, 2013, 30(3): 76- 79.
[8] 雍俊海, 郑文. 一类五次PH曲线Hermite插值的几何方法[J]. 计算机辅助设计与图形学学报, 2005, 17(5): 990-995. Yong Junhai, Zheng Wen. Geometric method for Hermite interpolation by a class of PH quintics[J]. Journal of Computer Aided Design & Computer Graphics, 2005, 17(5): 990-995.
[9] 丁明跃, 郑昌文, 周成平, 等. 无人飞行器航迹规划[M]. 北京: 电子工业出版社, 2009. Ding Mingyue, Zheng Changwen, Zhou Chengping, et al. Route planning for unmanned aerial vehicles[M]. Beijing: Publishing House of Electronics Industry, 2009.
[10] Shi Y, Eberhart R, Empirical C. Study of particle swarm optimization[C]//Proceeding of the World Multi-conference on Systemics, Cybernetics and Informatics. Orlando, FL: International Institute of Informatics and Systmics, 2000: 1945-1950.
[11] 李丽, 牛奔. 粒子群优化算法[M]. 北京: 冶金工业出版社, 2009. Li Li, Niu Ben. Particle swarm optimization[M]. Beijing: Metallurgical Industry Press, 2009.
Outlines

/