Reviews

Reservoir stimulation in hot dry rock resource development

  • WANG Guiling ,
  • MA Feng ,
  • LIN Wenjing ,
  • ZHANG Wei
Expand
  • Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China

Received date: 2015-01-16

  Revised date: 2015-01-31

  Online published: 2015-06-11

Abstract

As a clean renewable resource, hot dry rock is widely distributed in China. Based on preliminary estimation, the available hot dry rock resources buried beneath the earth surface between 3 and 10 km account for 90% of the total geothermal resources. However, it is challenging to get these resources efficiently. The key technology for development of these resources is reservoir stimulation, which should guarantee a large reservoir volume for heat exchange, and the extraction well should keep sufficient flow rate and be sustainable for long-term heat extraction. This paper summarizes research progress of reservoir stimulation and related key technologies in world hot dry rock stimulation projects, aiming to promote the development of hot dry rock resources and research of related technologies in China.

Cite this article

WANG Guiling , MA Feng , LIN Wenjing , ZHANG Wei . Reservoir stimulation in hot dry rock resource development[J]. Science & Technology Review, 2015 , 33(11) : 103 -107 . DOI: 10.3981/j.issn.1000-7857.2015.11.018

References

[1] Tester J W, Anderson B J, Batchelor A S, et al. The future of geothermal energy-impact of enhanced geothermal system (EGS) on the United States in the 21 century[M]. Cambridge MA: MITMassachusetts Institute of Technology, 2006.
[2] 国家能源局, 财政部, 国土资源部, 住房城乡建设部. 关于促进地热能开发利用的指导意见[J]. 太阳能, 2013(4): 15-18. The National Energy Administration, The Ministry of Finance, Ministry of Land and Resources, Ministry of Housing Urban and Rural Development. Guidance on the promotion of geothermal energy development and utilization[J]. Soler Energy, 2013(4): 15-18.
[3] 庞忠和, 胡圣标, 汪集旸. 中国地热能发展路线图[J]. 科技导报, 2012, 30(32): 18-24. Pang Zhonghe, Hu Shengbiao, Wang Jiyang. A roadmap to geothermal energy development in China[J]. Science and Technology Review 2012, 30(32): 18-24.
[4] 蔺文静, 刘志明, 马峰, 等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5): 807-811. Lin Wenjing, Liu Zhiming, Ma Feng, et al. An estimation of HDR resources in China's mainland[J]. Journal of Geological, 2012, 33(5): 807-819.
[5] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. Wang Jiyang, Hu Shengbiao, Pang Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science and Technology Review, 2012, 30(32): 25-31.
[6] 曾玉超, 苏正, 吴能友, 等. 增强型地热系统储层试验与性能特征研究进展[J]. 矿业研究与开发, 2012, 3(32): 22-27. Zeng Yuchao, Su Zheng, Wu Nengyou, et al. Advances in reservoir test and performance characteristics of enhanced geothermal system[J]. Mining Research and Development, 2012, 3(32): 22-27.
[7] 康玲, 王时龙, 李川. 增强地热系统EGS的人工热储技术[J]. 机械设计与制造, 2008(9): 141-143. Kang Ling, Wang Shilong, Li Chuan. Atificial reservoir development technology in enhanced geothermal system[J]. Machinery Design & Manufacture, 2008(9): 141-143.
[8] Huenges E, Trautwein U, Legarth B, et al. Fluid pressure variation in a sedimentary geothermal reservoir in the North German Basin: Case study Groβ Schönebeck[J]. Pure and Applied Geophysics, 2006, 163 (10): 2141-2152 .
[9] Stanford University. Proceedings of 35th Workshop on Geothermal Reservoir Engineering[C]. California, 2010.
[10] 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45. Xu Tianfu, Zhang Yanjun, Zeng Zhaofa, et al. Technology Progress in an enhanced geothermal system (hot dry rock)[J]. Science and Technology Review, 2012, 30(32): 42-45.
[11] Ustaszewski K, Schmid S M. Latest Pliocene to recent thick-skinned tectonics at the Upper Rhine Graben- Jura Mountains junction[J]. Swiss Journal of Geosciences, 2007, 100(8): 293-312.
[12] Valley B, Evans K F. Stress orientation to 5 km depth in the basement below Basel (Switzerland) from borehole failure analysis[J]. Swiss Journal of Geosciences, 2009, 102(3): 467-480.
[13] Legarth B, Tischner T, Huenge S E. Stimulation experiments in sedimentary, low-enthalpy reservoirs for geothermal power generation[J]. Geothermics, 2003, 32(4-6): 487-495.
[14] Cladouhos T T, Clyne M, Nichols M, et al. Newberry volcano EGS demonstration stimulation modeling[J]. GRC Transactions, 2011, 35: 317-322.
[15] Cladouhos T T, Osborn W L, Petty S, et al. Newberry volcano EGS demonstration-phase I results, Proceedings[C]. Thirty-Seven Workshop on Geothermal Reservoir Engineering, Stanford, California, January 30-February 1, 2012.
[16] Legarth B, Huenges E, Zimmermann G. Hydraulic fracturing in sedimentary geothermal reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42: 7-8.
[17] Legarth B, Tischner T, Huenges E, et al. Stimulation experiments in sedimentary, low-enthalpy reservoirs for geothermal power generation[J]. Geothermics, 2003, 32(4-6): 487-495.
[18] Barelli A, Cappetti G, Manetti G, et al. Well stimulation in Latera Field[C/OL]. [2014-11-30]. http://pubs.geothermal-library.org/lib/grc/ 1001356.pdf.
[19] Barrios L A, Quijano J E, Romero R E, et al. Enhanced permeability by chemical stimulation at the Berlin Geothermal Field[C/OL]. [2014- 11-30]. http://pubs.geothermal-library.org/lib/grc/1019575.pdf.
[20] Serpen U, Türeyen O I. Acidizing geothermal wells[C/OL]. [2014-11- 30]. http://pubs.geothermal-library.org/lib/grc/1016872.pdf.
Outlines

/