Reviews

A review on CO2 geological storage technologies and chemical behaviors of isotope in salty water layer

  • LIU Zijian ,
  • ZHANG Nan ,
  • ZHANG Fengjun
Expand
  • 1. College of Environment and Resources, Jilin University, Changchun 130021, China;
    2. Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong 999077, China

Received date: 2014-10-23

  Revised date: 2015-02-27

  Online published: 2015-06-11

Abstract

Deep saline aquifer is a major geological storage site for CO2. The geochemical behaviors of deep saline aquifers differ each other due to their different geological backgrounds and geochemical environments in their geological histories. This paper reviews the research progresses on geological storage space and storage capacity, types of geological storage and chemical behaviors of isotopelabeled CO2 in saltwater layer. It is shown that though current researches on CO2 geological storage have made progresses in phenomenon experiments, simulations and field experiments, many theoretical and technical problems of the behaviors of CO2 after injecting underground remain unresolved. The choice of monitoring methods for CO2 geological storage mainly depends on the specific site condition and risk profile. Future technological developments may focus on the evaluation of storage site and monitoring technologies of reservoir response.

Cite this article

LIU Zijian , ZHANG Nan , ZHANG Fengjun . A review on CO2 geological storage technologies and chemical behaviors of isotope in salty water layer[J]. Science & Technology Review, 2015 , 33(11) : 108 -113 . DOI: 10.3981/j.issn.1000-7857.2015.11.019

References

[1] De Coninck H, Stephens J, Metz B. Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration[J]. Energy Policy, 2009, 37(6): 2161-2165.
[2] 李小春, 方志明. 中国CO2 地质埋存关联技术的现状[J]. 岩土力学, 2007, 28(10): 2229-2239. Li Xiaochun, Fang Zhiming. Status quo of connection technologies of CO2 geological storage in China[J]. Rock and Soil Mechanics, 2007, 28 (10): 2229-2239.
[3] 李桂菊, 张军, 季路成. 美国未来零排放燃煤发电项目最新进展[J]. 中外能源, 2009, 14(5): 96-100. Li Guiju, Zhang Jun, Ji Lucheng. Progress in US zero-emission coalfired power generation program[J]. Sino-global Energy, 2009, 14(5): 96- 100.
[4] Li X, Wei N, Liu Y, et al. CO2 point emission and geological storage capacity in China[J]. Energy Proceed, 2009, 1(1): 2793-2800.
[5] 刘延峰, 李小春, 方志明, 等. 中国天然气田CO2储存容量初步评估[J]. 岩土力学, 2006, 27(12): 2277-2281. Liu Yanfeng, Li Xiaochun, Fang Zhiming, et al. Preliminary estimation of CO2 storage capacity in gas fields in China[J]. Rock and Soil Mechanics, 2006, 27(12): 2277-2281.
[6] 崔振东, 刘大安, 曾荣树, 等. 中国CO2地质封存与可持续发展[J]. 中国人口·资源与环境, 2010, 20(3): 9-13. Cui Zhendong, Liu Daan, Zeng Rongshu, et al. Geological sequestration of CO2 and China's sustainable development[J]. China Population, Resources and Environment, 2010, 20(3): 9-13.
[7] 2050中国能源和碳排放研究课题组. 2050中国能源和碳排放报告 ——中国2050低碳发展情景研究[M]. 北京: 科学出版社, 2009. Chinese Energy and Carbon Emissions Research Group of 2050. Chinese energy and carbon emissions reporting of 2050: Low carbon development situation of China in 2050[M]. Beijing: Science Press, 2009.
[8] Cook P J. Demonstration and deployment of carbon dioxide capture and storage in Australia[J]. Energy Procedia, 2009, 1(1): 3859-3866.
[9] Garcia B, Delaplace P, Rouchon V, et al. The CO2- vadose project: Numerical modeling to perform a geochemical monitoring methodology and baseline performance assessment for various geochemical variables (gas flux, gas composition, stable isotopes and noble gases) in the carbonate vadose zone[J]. International Journal of Greenhouse Gas Control, 2013, 14: 247-258.
[10] 段海燕, 王雷. 我国石油工业二氧化碳地质封存研究[J]. 石油钻采工艺, 2009, 31(1): 121-122. Duan Haiyan, Wang Lei. Study on the carbon dioxide geological storage in petroleum industry in China[J]. Oil Drilling & Production Technology, 2009, 31(1): 121-122.
[11] 张军, 李小春. 国际能源战略与新能源技术进展[M]. 北京: 科学出版社, 2008. Zhang Jun, Li Xiaochun. Review of international energy strategy and new energy technology[M]. Beijing: Science Press, 2008.
[12] 葛复光, 卓金和. 二氧化碳捕获与封存技术经济评估[J]. 武汉大学学报: 工学版, 2012, 6(45): 821-827. Ge Fuguang, Zhuo Jinhe. Techno- economic assessment of carbon capture and storage[J]. Engineering Journal of Wuhan University, 2012, 6(45): 821-827.
[13] Metz B, Davison O, De Coninck H, et al. IPCC special report on carbon dioxide capture and storage[M]. UK: Cambridge University Press, 2005: 205-252, 342-360.
[14] Papanikolau N, Hobbs B L W, Gale J. IEA greenhouse gas R&D programme: Safe storage of CO2: Experience from the natural gas storage industry[C]. The 8th International Conference, Trondheim, Norway, June 19-22, 2006.
[15] 张军, 李桂菊. 二氧化碳封存技术及研究现状[J]. 能源与环境, 2007 (2): 33-35. Zhang Jun, Li Guiju. The review of carbon dioxide sequestration technology[J]. Energy and Environment, 2007(2): 33-35.
[16] Bachu S, Bonijoly D, Bradshaw J, et al. CO2 storage capacity timation: Methodology and gaps[J]. International Journal of Greenhouse Gas Control, 2007, 1: 430-443.
[17] Hansson A, Bryngelsson M. Expert opinions on carbon dioxide capture and storage—A framing of uncertainties and possibilities[J]. Energy Policy, 2009(37): 2273-2282.
[18] 于德龙, 吴明, 赵玲, 等. 碳捕捉与封存技术研究[J]. 当代化工, 2014, 43(4): 544-546, 579. Yu Delong, Wu Ming, Zhao Ling, et al. Research on carbon dioxide capture and storage technology[J]. Contemporary Chemical Industry, 2014, 43(4): 544-546, 579.
[19] Hendriks C, Graus W, Bergen F. Global carbon dioxide storage potential and cost[R]. Netherlands: ECOFYS, 2004.
[20] 白冰, 李小春, 刘延锋, 等. 中国CO2集中排放源调查及其分布特征[J]. 岩石力学与工程学报, 2006, 25(增1): 2918-2923. Bai Bing, Li Xiaochun, Liu Yanfeng, et al. Preliminary study on CO2 industrial point sources and their distribution in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(Suppl 1): 2918-2923.
[21] 刘宇, 曹江, 朱声宝. 挑战全球气候变化—二氧化碳捕集与封存[J]. 前沿科学, 2010(1): 40-51. Liu Yu, Cao Jiang, Zhu Shengbao. Challenging climate change: Carbon dioxide capture and storage[J]. Frontier Science, 2010(1): 40- 51.
[22] 王勇英, 周建明. 浅谈二氧化碳捕获与封存技术[J]. 煤炭技术, 2011 (3): 57-62. Wang Yongying, Zhou Jianming. Discussion on the carbon dioxide capture and storage technology[J]. Coal Quality Technology, 2011(3): 57-62.
[23] 吴黎明, 潘卫国, 郭瑞堂, 等. 富氧燃烧技术的研究进展及分析[J]. 锅炉技术, 2011, 1(42): 36-38, 68. Wu Liming, Pan Weiguo, Guo Ruitang, et al. The research and analysis of oxygen combustion technology[J]. Boiler Technology, 2011, 1(42): 36-38, 68.
[24] Vermeiren W, Gilson J P. Impact of zeolites on the petroleum and petrochemical industry[J]. Chemistry and Materials Science, 2009, 52 (9): 1131-1161.
[25] 李小春, 刘延锋, 白冰, 等. 中国深部咸水含水层CO2储存优先区域选择[J]. 岩石力学与工程学报, 2006, 25(5): 963-968. Li Xiaochun, Liu Yanfeng, Bai Bing, et al. Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 963-968.
[26] 李小春, 刘延锋, 白冰. 中国CO2煤层封存容量初步评价[J]. 岩石力学与工程学报, 2005, 24(16): 2947-2952. Li Xiaochun, Liu Yanfeng, Bai Bing. Preliminary estimation of CO2 storage capacity of coalbeds in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2947-2952.
[27] 李宏军, 黄盛初. 中国CCS 的发展前景及最新行动[J]. 中国煤炭, 2010(1): 13-17. Li Hongjun, Huang Shengchu. China's development potential & latest actions on CCS[J]. China Coal, 2010(1): 13-17.
[28] Bouvart F, Prieur A. Comparison of life cycle GHG emissions and energy consumption of combined electricity and H2 production pathways with CCS: Selection of technologies with natural gas, coal and lignite as fuel for the European HYPOGEN programme[J]. Energy Procedia, 2009, 1(1): 3779-3786.
[29] IPCC. Intergovernmental panel on climate change (IPCC) special report: Carbon dioxide capture and storage[R]. Copenhagen: WMO, 2005.
[30] Zhang H X, Li X C, Wei N. The major technology track and analysis about carbon dioxide capture and storage[J]. Advances in Earth Science, 2010, 25(3): 335-340.
[31] Wollenweber J, Alles S, Busch A, et al. Experimental investigation of the CO2 sealing efficiency of caprocks[J]. International Journal of Greenhouse Gas Control, 2010, 4(2): 231-241.
[32] Vilarrasa V, Olivella S, Carrera J. Geomechanical stability of the caprock during CO2 sequestration in deep saline aquifers[J]. Energy Proceed 10th International Conference on Greenhouse Gas Control Technologies, 2011, 4: 5306-5313.
[33] Rutqvist J, Birkholzer J T, Tsang C. Coupled reservoirgeomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir-caprock systems[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 132-143.
[34] Ambrose A. Quick- look assessments to identify optimal CO2 EOR storage sites[J]. Environment Geology, 2008, 54: 1695-1706.
[35] Gentzis T. Subsurface sequestration of carbon dioxide—An overview from an Alberta (Canada) perspective[J]. International Journal of Coal Geology, 2000, 43(1): 287-305.
[36] Emberley S, Hutcheon I, Shevalier M, et al. Monitoring of fluid-rock interaction and CO2 storage through produced fluid sampling at the Weyburn CO2- injection enhanced oilrecovery site, Saskatchewan, Canada[J]. Applied Geochemistry, 2005, 20(6): 1131-1157.
[37] Cantucci B, Montegrossi G, Vaselli O, et al. Geochemical modeling of CO2 storage in deep reservoirs: The Weyburn Project (Canada) case study[J]. Chemical Geology, 2009, 265(1): 181-197.
[38] Kharaka Y, Cole D, Thordsen J, et al. Gas-water-rock interactions in sedimentary basins: CO2 sequestration in the Frio Formation, Texas, USA[J]. Journal of Geochemical Exploration, 2006, 89(1): 183-186.
[39] Johnson G, Mayer B. Oxygen isotope exchange between H2O and CO2 at elevated CO2 pressures: Implications for monitoring of geological CO2 storage[J]. Applied Geochemistry, 2011, 26(7): 1184-1191.
[40] Assayag N, Matter J, Ader M, et al. Water-rock interactions during a CO2 injection field- test: Implications on host rock dissolution and alteration effects[J]. Chemical Geology, 2009, 265(1): 227-235.
[41] Oxygen H J. Carbon isotope fractionation in the system dolomitewater- CO2 to elevated temperatures[J]. Geochimica et Cosmochimica Acta, 2014, 129: 111-124.
[42] Gilfillan S M V, Lollar B S, Holland G, et al. Solubility trapping in formation water as dominant CO2 sink in natural gas fields[J]. Nature, 2009, 458(7238): 614-618.
[43] Audigane P, Gaus I, Czernichowsk-Lauriol I, et al. Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the sleipner site, north sea[J]. American Journal of Science, 2007, 307(7): 974-1008.
[44] 李义曼, 庞忠和, 李捷, 等. 二氧化碳咸水层封存和利用[J]. 科技导报, 2012, 30(19): 70-79. Li Yiman, Pang Zhonghe, Li Jie, et al. CO2 sequestration and utilization in deep saline aquifers[J]. Science & Technology Review, 2012, 30(19): 70-79.
[45] 孟繁奇, 李春柏, 刘立, 等. CO2-咸水-方解石相互作用实验[J]. 地质科技情报, 2013, 32(2): 171-176. Meng Fanqi, Li Chunbai, Liu Li, et al. Experiment of CO2- saline water-calcite interactions[J]. Geological Science and Technology Information, 2013, 32(2): 171-176.
[46] 杨国栋, 李义连, 马鑫, 等. 绿泥石对CO2-水-岩石相互作用的影响[J]. 地球科学: 中国地质大学学报, 2014, 39(4): 462-472. Yang Guodong, Li Yilian, Ma Xin, et al. Effect of chlorite on CO2- water-rock interaction[J]. Earth Science: Journal of China University of Geosciences, 2014, 39(4): 462-472.
[47] Hu J, Duan Z, Zhu C, et al. PVTx properties of the CO2-H2O and CO2- H2O- NaCl systems below 647 K: Assessment of experimental data and thermodynamic models[J]. Chemical Geology, 2007, 238: 249-267.
[48] 李德栋. 气水岩矿体系相平衡及其在二氧化碳地质封存数值模拟中的应用[D]. 北京: 中国科学院研究生院, 2008. Li Dedong. The gas-water-rock system phase equilibrium applied in numerical simulation of CO2 geological storage[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2008.
[49] Pruess K, Garcla J, Kovscek T, et al. Code intercomperison builds confidence in numerical simulation models for geologic disposal of CO2[J]. Energy, 2004, 29: 1431-1444.
[50] Pruess K, Spycher N. ECO2N-A fluid Property module for the TOUGH2 code far studies of CO2 storage in saline aquifers[J]. Energy Conversion and Management, 2007, 48(6): 1761-1767.
[51] Busch A, Alles S, Krooss B M, et al. Effects of physical sorption and chemical reactions of CO2 in shaly caprocks[J]. Energy Procedia, 2009, 1(1): 3229-3235.
[52] Vilarrasa V, Bolster D, Olivella S, et al. Coupled hydromechanical modeling of CO2 sequestration in deep saline aquifers[J]. International Journal of Greenhouse Gas Control, 2010, 4(6): 910-919.
[53] Ducellier A, Seyedi D, Foerster E. A coupled hydromechanical fault model for the study of the integrity and safety of geological storage of CO2[J]. Energy Procedia, 2011, 4: 5138-5145.
Outlines

/