Focus

Reflections on earth science development trend: Geodynamics and formation mechanism of superlarge mineral deposits

  • LIU Guanglian ,
  • ZHANG Aikui
Expand
  • 1. No. 3 Exploration Institute of Geology and Mineral Resources of Qinghai Province, Xining 810029, China;
    2. College of Earth Sciences and Mineral Resources, China University of Geosciences, Beijing 100083, China

Received date: 2014-11-17

  Revised date: 2015-03-12

  Online published: 2015-06-11

Abstract

Earth science has been profoundly transformed in the direction of system science. Grasping the development trend of earth science is helpful for understanding the general direction of earth science research. This paper inquires into the trend of earth science development, focusing on two frontier issues in earth science, geodynamics and superlarge deposits. Geodynamics is pivotal for studying earth formation and evolution, including lithospheric plate dynamics, mantle dynamics, core dynamics and core- mantle dynamics. The key to geodynamic studies is the power source of earth, involving integrity of the whole earth and interactions of earth spheres. Superlarge deposits, especially non- conventional ones, are formed with specific factors under specific conditions. The formation mechanism of superlarge deposits is also related to the interaction of earth spheres. Based on discussion of the aforementioned issues, earth science is considered to develop toward holistic and systematic orientation. Studies of a single earth sphere cannot meet the requirement of earth science development. Earth science research needs to be oriented toward systemization.

Cite this article

LIU Guanglian , ZHANG Aikui . Reflections on earth science development trend: Geodynamics and formation mechanism of superlarge mineral deposits[J]. Science & Technology Review, 2015 , 33(11) : 114 -119 . DOI: 10.3981/j.issn.1000-7857.2015.11.020

References

[1] Wan T F. The tectonics of China: Data, maps and evolution[M]. Beijing, Dordrecht Heideiberg, London and New York: Higher Education Press and Springer, 2011: 1-501.
[2] 万天丰. 论构造地质学和大地构造学的几个重要问题[J]. 地学前缘, 2014, 21(1): 132-149. Wang Tianfeng. Discussion on some important problems in structural geology and tectonics[J]. Earth Science Frontiers, 2014, 21(1): 132-149.
[3] 韩发, 孙海田. Sedex 型矿床成矿系统[J]. 地学前缘, 1999, 6(1): 140- 163. Han Fa, Sun Haitian. Metallogenic system of Sedex type deposits: A review[J]. Earth Science Frontiers, 1999, 6(1): 140-163.
[4] 罗俊杰, 张建芳. Sedex 型矿床地质特征及成矿物质来源示踪[J]. 资源环境与工程, 2010, 24(1): 36-40. Luo Junjie, Zhang Jianfang. Geological characteristics of Sedex type deposit and tracing for sources of metallogenic material[J]. Resources Enviroment and Engineering, 2010, 24(1): 36-40.
[5] 郑明华. 矿床地质学之复兴[J]. 地学前缘, 2014, 21(5): 1-12. Zheng Minghua. The renaissance of economic geology[J]. Earth Science Frontiers, 2014, 21(5): 1-12.
[6] 张长青, 吴越, 王登红, 等. 中国铅锌矿床成矿规律概要[J]. 地质学报, 2014, 88(12): 2252-2268. Zhang Changqing, Wu Yue, Wang Denghong, et al. Brief introduction on metallogeny of Pb-Zn deposits in China[J]. Acta Geologica Sinica, 2014, 88(12): 2252-2268.
[7] 王鸿祯. 地球的节律与大陆动力学的思考[J]. 地学前缘, 1997, 4(3): 1-12. Wang Hongzhen. Speculations on earth's rhythms and continental dynamics[J]. Earth Science Frontiers, 1997, 4(3): 1-12.
[8] 陈泮勤, 马振华, 王庚辰. 地球系统科学[M]. 北京: 地震出版社, 1992: 1-189. Chen Panqin, Ma Zhenhua, Wang Gengchen. Earth system science[M]. Beijing: Seismological Press, 1992: 1-189.
[9] 翟裕生. 地球系统科学与成矿学研究[J]. 地学前缘, 2004, 11(1): 1-10. Zhai Yusheng. Earth system sciences and the study on metallogenesis[J]. Earth Science Frontiers, 2004, 11(1): 1-10.
[10] Song X, Richards P G. Seismological evidence for differential rotation of the earth's inner core[J]. Nature, 1996, 382(6588): 221-224.
[11] 刘亮明, 彭省临. 核—幔相互作用及其地球动力学意义[J]. 高校地质学报, 1997, 3(4): 438-444. Liu Liangming, Peng Shenglin. Core-mantleinte raction and its geodynamical implication[J]. Geologieal Journal of China Universities, 1997, 3(4): 438-444.
[12] 侯渭, 谢鸿森. 关于地核和核慢边界区物质的成分及运动特征的研究进展[J]. 地球科学进展, 1996, 11(2): 204-208. Hou Wei, Xie Hongsen. The progresses in composition and movement of materials in core and core-mantle boundary region[J]. Advance in Earth Sciences, 1996, 11(2): 204-208.
[13] Ito E, Katsura T. Dissolution of silicon and oxygen in molten iron at high pressure and temperature[J]. Proceedings of the Japan Academy, Series B, 1991, 67: 153-158.
[14] Bochler R. Core-mantle reaction[J]. Eos, Transactions American Geophysical Union, 1993, 74(43): 415.
[15] Murakamim, Hirose K, Kawamura K, et al. Post perovskite phase transition in MgsiO3[J]. Science, 2004, 304(5672): 855-858.
[16] 张苑, 舒良树. 21世纪实验岩石学的重大突破—核幔边界D"层研究[J]. 地质学刊, 2010, 34(2):113-116. Zhang Yuan, Shu Liangshu. On research achievements in earth's D" layer in core-mantle boundary an important breakthrough in 21st experimental petrology[J]. Journal of Geology, 2010, 34(2): 113-116.
[17] Wilson J T. A possible origin of the Hawaiian islands[J]. Canadian Journal of Physics, 1963, 41: 863-870.
[18] Morgan W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230(5288): 42-43.
[19] Campbell I H, Griffiths R W. Implications of mantle plume structure for the evolution of flood basalts[J]. Earth Planet Science Letter, 1990, 99: 79-93.
[20] Anderson D L. Chemical plume in the mantle[J]. Geological Society of America Bulletin, 1975, 86: 1593-1600.
[21] Peltier W R. Mantle convection plate tectonics and global dynamics[M]. New York: Gordon and Breach Science Publishers, 1989.
[22] Fu R S, Huang J H, Wei Z X. The upper mantle flow beneath the North China platform[J]. Pageoph, 1996, 146(3): 649-660.
[23] 叶正仁, 白武明, 藤春凯. 地幔对流的数值模拟及其与表面观测的关系[J]. 地球物理学报, 1993, 36(1): 27-36. Ye Zhengren, Bai Wuming, Teng Chunkai. The numerical modelling of mantle convection and its relationship to surface observations[J]. Acta Geophysica Sinica, 1993, 36(1): 27-36.
[24] 王仁. 我国地球动力学的研究进展与展望[J]. 地球物理学报, 1997, 40(增1): 50-59. Wang Ren. Progress and outlook of geodynamic research in China[J]. Acta Geophysic Sinica, 1997, 40(Suppl l): 50-59.
[25] Forsyth D, Uyeda S. On the relative importance of the driving forces of plate motion[J]. Geophysical Journal of the Royal Astronomical Society, 1975, 43: 163-200.
[26] 藏绍先. 我国地球动力学的研究进展与展望[J]. 地球物理学报, 1994, 37(增1): 114-127. Zang Shaoxian. Advance and prospect in the study of geodynamics in China[J]. Acta Geophysic Sinica, 1994, 37(Suppl l): 114-127.
[27] Foulger G R. 地幔柱: 为什么现在怀疑?[J]. 科学通报, 2005, 50(17): 1814-1818. Foulger G R. Mantle plumes: Why the current skepticism?[J]. Chinese Science Bulletion, 2005, 50(17): 1814-1818.
[28] Laznieka P. Giant ore deposits, a quantitation approach[J]. Global Tectonis and Metallogerty, 1983(2): 41-63.
[29] 涂光炽. 关于超大型矿床的寻找和理论研究[J]. 矿物岩石地球化学通讯, 1989(3): 163-168. Tu Guangchi. On prospecting and theoretical research of superlarge mineral deposits[J]. Bulletin of Mineralogy Petrology and Geochemistry, 1989(3): 163-168.
[30] 裴荣富, 梅燕雄, 李进文. 特大型矿床与异常成矿作用[J]. 地学前缘, 2004, 11(2): 323-331. Pei Rongfu, Mei Yanxiong, Li Jinwen. Exceptional large ore deposits and anomalous ore-forming process[J]. Earth Science Frontiers, 2004, 11(2): 323-331.
[31] 裴荣富, 梅燕雄, 瞿泓滢, 等. 大型-超大型矿床找矿新认知[J]. 矿床地质, 2013, 32(4): 661-671. Pei Rongfu, Mei Yanxiong, Qu Hongying, et al. New recongnized intellect for prospecting large-superlarge mineral deposits[J]. Mineral Deposits, 2013, 32(4): 661-671.
[32] 赵振华, 刘秉光, 李朝阳. 我国与寻找超大型矿床有关的基础研究进展[J]. 地球科学进展, 2001, 16(2): 184-188. Zhao Zhenhua, Liu Bingguang, Li Chaoyang. Advance in basic researches pertaining to exploration of superlarge ore deposits in China[J]. Adcance in Earth Sciences, 2001, 16(2): 184-188.
[33] 翟裕生. 金属成矿学研究的若干进展[J]. 地质与勘探, 1997, 33(1): 13-18. Zhai Yusheng. Progresses on metallization research[J]. Geology and Prospecting, 1997, 33(1): 13-18.
[34] 涂光炽. 试论非常规超大型矿床物质组成、地质背景、形成机制的某些独特性——初谈非常规超大型矿床[J]. 中国科学: D辑, 1998, 28 (增1): 1-6. Tu Guangchi. The unique nature in ore deposition, geological background and metallogenic mechanism of non-conventional superlarge ore deposits: A preliminary discussion[J]. Science in China: Series D, 1998, 28(Suppl l): 1-6.
[35] 柳志清. 超大型矿床密集区的成因及预测[J]. 地球科学进展, 1989, 6: 21-36. Liu Zhiqing. The causes and prediction of superlarge deposit concentrated region[J]. Adcance in Earth Sciences, 1989, 6: 21-36.
[36] 肖志峰, 欧阳自远, 林文祝. 地球原始不均一性对超大型矿床分布的制约[J]. 地质地球化学, 1995, 5: 75-80. Xiao Zhifeng, Ouyang Ziyuan, Lin Wenzhu. The restriction of earth original non-homogeneity to the distribution of super ore deposit[J]. Geological Geochemistry, 1995, 5: 75-80.
[37] 岳宗玉, 刘建忠, 吴淦国, 等. 地球的原始不均一性起源及其对超大型矿床分布的制约[J]. 矿物岩石地球化学通报, 2005, 24(4): 357- 362. Yue Zongyu, Liu Jianzhong, Wu ganguo, et al. Initial heterogeneity of the earth and origin of super-large scale ore deposit[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(4): 357-362.
[38] 易建斌. 全球锑成矿学基本特征及超大型锑矿床成矿背景初探[J]. 大地构造与成矿学, 1994, 18(9): 191-198. Yi Jianbin. Characteristics of global antimony metallogeny and preliminary study on geological background of the superlarge antimony mineralization[J]. Geptectonica et Metallogenia, 1994, 18(9): 191-198.
[39] 黄瑞华. 中国莫霍面形态与岩金矿分布关系[J]. 大地构造与成矿学, 1994, 18(3): 191-198. Huang Ruihua. Moho shape and distribution of rock gold deposit[J]. Geptectonica et Metallogenia, 1994, 18(3): 191-198.
[40] 冉崇英, 张智筠, 刘卫华, 等. 康滇裂谷旋回与铜矿层楼结构及其地球化学演化[J]. 中国科学: B辑, 1994, 24(3): 325-330. Ran Chongying, Zhang Zhijun, Liu Weihua, et al. Kangdian rift cycle copper ore layers structure and its evolution[J]. Science in China: Series B, 1994, 24(3): 325-330.
[41] Haynes D W, Ciioss K C, Bills R T, et al. Olympic dam ore genesis: A fluid-mixing model[J]. Economic Geology, 1995, 90(2): 281-307.
[42] 温志坚, 毛景文. 超临界流体的研究进展及其对成矿地球化学研究的启示[J]. 地质论评, 2002, 48(1): 106-112. Wen Zhijian, Mao Jingwen. Progress in supercritical fluid technology and its implication for metallogenesis[J]. Geological Review, 2002, 48 (1): 106-112.
[43] 王传远, 杜建国, 刘巍, 等. 超临界流体的地质意义[J]. 西北地质, 2005, 38(2): 49-53. Wang Chuanyuan, Du Jianguo, Liu Wei, et al. Geological applications of supercritical fluids[J]. Northwestern Geology, 2005, 38(2): 49-53.
Outlines

/