Articles

Method of numerical simulations for inclined shaft freezing sinking

  • YANG Renshu ,
  • WANG Qianxing
Expand
  • School of Mechanics & Civil Engineering, China University of Mining & Technology, Beijing 100083, China

Received date: 2014-11-28

  Revised date: 2015-04-27

  Online published: 2015-07-15

Abstract

In order to improve the simulation accuracy of the initial stress field and the digging process in inclined shaft sinking with ANSYS, a new method combining the double-model method and the advanced overlapping-element method is put forward. With a freezing inclined shaft construction in mind, taking the frozen soil as an elastic-plastic medium, a plane model of the freezing sinking of the inclined shaft is established, and the simulation is carried out. The simulation results show that the distribution characteristics of the model initial stress and displacement qualitatively agree with the theoretical results of the original ground stress obtained by adopting the double-model for the initial stress-displacement field. An advanced overlapping-element is adopted in simulating the excavation and support process under the total unloading, and the hoop stress of the inner shaft lining below 10-6 MPa, and the lining displacement of below 10-7 m under different model depths are obtained, which are close to the theoretical values. It is shown that the new method is superior to the traditional method, and is more accurate.

Cite this article

YANG Renshu , WANG Qianxing . Method of numerical simulations for inclined shaft freezing sinking[J]. Science & Technology Review, 2015 , 33(12) : 38 -43 . DOI: 10.3981/j.issn.1000-7857.2015.12.006

References

[1] 周晓敏. 斜井井筒的冻结法施工[J]. 建井技术, 1989(3): 20-22. Zhou Xiaomin. Inclined shaft construction with freezing method[J]. Mining Construction Technology, 1989(3): 20-22.
[2] El Sawwaf M, Nazir A K. The effect of deep excavation-induced lateral soil movements on the behavior of strip footing supported on reinforced sand[J]. Journal of Advanced Research, 2012(3): 337-344.
[3] Yoo C, Lee D. Deep excavation- induced ground surface movement characteristics-A numerical investigation[J]. Computers and Geotechnics, 2008, 35(2): 231-252.
[4] Akhaveissy A H. Analysis of tunnel and super structures for excavation[J]. Scientia Iranica A, 2011, 18(1): 1-8.
[5] 王新敏. ANSYS工程结构数值分析[M]. 北京: 人民交通出版社, 2007. Wang Xinmin. The numerical simulation of engineering construction with ANSYS[M]. Beijing: China Communications Press, 2007.
[6] 周雪铭, 刘辉, 彭川, 等. 岩溶隧道开挖对溶洞处治结构影响的数值模 拟分析[J]. 岩土力学, 2011, 32(1): 269-275. Zhou Xueming, Liu Hui, Peng Chuan, et al. Numerical simulation analysis of deformation effect on treatment structure of karst cave due to karst tunnel excavation[J]. Rock and Soil Mechanics, 2011, 32(1): 269- 275.
[7] 肖明, 叶超, 傅志浩, 等. 地下隧洞开挖和支护的三维数值分析计算[J]. 岩土力学, 2007, 28(12): 2501-2505. Xiao Ming, Ye Chao, Fu Zhihao, et al. Three- dimensional numerical simulation and analysis of excavation and support in underground tunnel [J]. Rock and Soil Mechanics, 2007, 28(12): 2501-2505.
[8] 王衍森, 文凯. 深厚表土中冻结壁与井壁相互作用的数值分析[J]. 岩土 工程学报, 2014, 36(6): 1142-1146. Wang Yansen, Wen Kai. Numerical analysis on the interaction between freezing wall and shaft lining in deep alluvial[J]. China Journal of Geotechnical Engineering, 2014, 36(6): 1142-1146.
[9] 吉小明, 张选兵, 白世伟. 浅埋暗挖地铁隧道开挖过程的模拟研究[J]. 岩土力学, 2002, 23(6): 828-830. Ji Xiaoming, Zhang Xuanbing, Bai Shiwei. Simulation study of excavation process of shallow embedded tunnel for metro[J]. Rock & Soil Mechanics, 2002, 23(6): 828-830.
[10] 李仲奎, 戴荣, 姜逸明. FLAC3D分析中的初始应力场生成及在大型 地下洞室群计算中的应用[J]. 岩石力学与工程学报, 2002, 21(增2): 2387-2392. Li Zhongkui, Dai Rong, Jiang Yiming. Improvement of the generation of the initial stress field by using FLAC3D and application in a huge underground caven group[J]. China Journal of Rock Mechanics and Engineering, 2002, 21(Suppl 2): 2387-2392.
[11] 杨玉贵, 高峰, 李涛, 等. 基于ANSYS的特厚冲积层冻结壁位移场数 值分析[J]. 长春理工大学学报: 自然科学版, 2007, 30(3): 53-55. Yang Yugui, Gao Feng, Li Tao, et al. Numerical calculation and simulation for displacement of special thick alluvium frozen wall[J]. Journal of Changchun University of Science and Technology: Natural Science Edition, 2007, 30(3): 53-55.
[12] 李围. 隧道及地下工程ANSYS实例分析[M]. 北京: 中国水利水电出 版社, 2008. Li Wei. The analysis of tunnel & underground construction application with ANSYS[M]. Beijing: China Water & Power Press, 2008.
[13] 王衍森, 杨维好, 黄家会, 等. 龙固副井冻结凿井期外壁混凝土应变 的实测研究[J]. 煤炭学报, 2006, 31(3): 296-300. Wang Yansen, Yang Weihao, Huang Jiahui, et al. Study of freeze sinking period concrete strain of outer shaft wall of Longgu Coal Mine auxiliary shaft[J]. Journal of China Coal Society, 2006, 31(3): 296-300.
[14] 王衍森, 张开顺, 李炳胜, 等. 深厚冲积层中冻结井外壁钢筋应力的 实测研究[J]. 中国矿业大学学报, 2007, 36(3): 287-291. Wang Yansen, Zhang Kaishun, Li Bingsheng, et al. In-situ measurement on the stress of reinforcing steel bar of outer freezing shaft wall in deep alluvium[J]. Journal of China University of Mining & Technology, 2007, 36(3): 287-291.
[15] 王衍森. 特厚冲积层冻结井外壁强度增长及受力与变形规律研究 [D]. 徐州: 中国矿业大学, 2005. Wang Yansen. Study on the law of strength increasing, load and deformation of outer shaft lining during freezing sinking in deep alluvium [D]. Xuzhou: China University of Mining & Technology, 2005.
[16] 崔广心, 杨维好, 吕恒林. 深厚表土层中的冻结壁和井壁[J]. 徐州: 中 国矿业大学出版社, 1998. Cui Guangxin, Yang Weihao, Lü Henglin. Frozen wall and shaft lining in deep alluvium[M]. Xuzhou: China University of Mining & Technology Press, 1998.
Outlines

/