Exclusive

Latest research development of electrode materials for microbial fuel cells

  • QI Qi ,
  • WANG Xuyun ,
  • JIA Yun
Expand
  • College of Chemical Engineering, Qingdao University of Science & Technology, QingDao 266042, China

Received date: 2015-05-01

  Revised date: 2015-05-29

  Online published: 2015-08-14

Abstract

The microbial fuel cell (MFC) is a promising bio-electrochemical system, which can directly convert the organic chemical energy into the electrical energy with microbes as the catalyst to degrade the organic sewage and produce electricity at the same time. This paper presents a comprehensive review of the latest studies of electrode materials, including the modification and the functionalization of anode materials, and of the cathode catalyst. Additionally, the direction of the electrode design and research in the MFC is suggested.

Cite this article

QI Qi , WANG Xuyun , JIA Yun . Latest research development of electrode materials for microbial fuel cells[J]. Science & Technology Review, 2015 , 33(14) : 28 -31 . DOI: 10.3981/j.issn.1000-7857.2015.14.004

References

[1] Wang X, Cheng S A, Feng Y J, et al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J]. Environmental Science & Technology, 2009, 43 (17): 6870-6874.
[2] Saito T, Mehanna M, Wang X, et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technology, 2011, 102(1): 395-398.
[3] Feng C H, Ma L, Li F B, et al. A polypyrrole/anthraquinone- 2,6- disulphonic disodium salt (PPy/AQDS)- modified anode to improve performance of microbial fuel cells[J]. Biosensors and Bioelectronics, 2010, 2(6): 1516-1520.
[4] Kim J R, Min B, Logan B E. Evaluation of procedures to acclimate a microbial fuel cell for electricity production[J]. Applied Microbiology and Biotechnology, 2005, 68(1): 23-30.
[5] Wang K P, Chen S L. The synthesise of electron- conducting redox hydrogel and its application in microbial fuel cell[J]. Journal of Electrochemistry, 2010, 16(1): 20-24.
[6] Tsai H Y, Wu C C, Lee C Y, et al. Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes[J]. Journal of Power Sources, 2009, 194(1): 199-205.
[7] Sun J J, Zhao H Z, Yang Q Z, et al. A novel layer-by-layer selfassembled carbon nanotube-based anode: Preparation, characterization, and application in microbial fuel cell[J]. Electro-chemical Acta, 2010, 55(9): 3041-3047.
[8] Qiao Y, Li C M, Bao S J, et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells[J]. Journal of Power Sources, 2007, 170(1): 79-84.
[9] 郑聪聪, 郭庆杰, 王许云, 等. MFC聚苯胺碳纳米管阳极电化学法制 备及其性能[J]. 化工学报, 2012, 63(5): 1559-1606. Zheng Congcong, Guo Qingjie, Wang Xuyun, et al. Preparation and performance of graphite anode modified electrochemically by polyaniline and carbon nanotubes for MFC[J]. CIESC Journal, 2012, 63 (5): 1559-1606.
[10] 刘兴倩, 王许云, 郭庆杰. PEDOT/MWCNTs 复合阳极的制备及在 MFC中的应用[J]. 化工学报, 2013, 64(5): 1773-1779. Liu Xingqian, Wang Xuyun, Guo Qingjie. Preparation and application of PEDOT/MWCNTs composite anode for MFC[J]. CIESC Journal, 2013, 64(5): 1773-1779.
[11] Huang Y X, Liu X W, Xie J F, et al. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems[J]. Chemical Communications, 2011, 47(20): 5795-5797.
[12] Zhang Y, Mo G, Li X, et al. A graphene modified anode to improve the performance of microbial fuel cells[J]. Journal of Power Sources, 2011, 196(13): 5402-5407.
[13] 何海波, 王许云, 白立俊, 等. 石墨烯/聚苯胺复合阳极的制备及在 MFC中的应用[J]. 化工学报, 2014, 65(6): 2186-2192. He Haibo, Wang Xuyun, Bai Lijun, et al. Preparation and application of GR/PANI composite anode for MFC[J]. CIESC Journal, 2014, 65(6): 2186-2192.
[14] Min B, Logan B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat microbial full cell[J]. Environmental Science & Technology, 2004, 38(21): 5809-5814.
[15] Cheng S, Liu H, Logan B E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells[J]. Environmental Science & Technology, 2006, 40(1): 364-369.
[16] Sanchez D V P, Huynh P, Kozlov M E, et al. Carbon nanotube/ platinum(Pt) sheet as an improved cathode for microbial fuel cells[J]. Energy & Fuels, 2010, 24(11): 5897-5902.
[17] Morris J M, Jin S, Wang J Q, et al. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells[J]. Electrochemistry Communications, 2007, 9(7): 1730-1734.
[18] Zhang L X, Liu C S, Zhuang L, et al. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells[J]. Biosens Bioelectron, 2009, 24(9): 2825-2829.
[19] Roche I, Katuri K, Scott K. A microbial fuel cell using manganese oxide oxygen reduction catalysts[J]. Journal of Applied Electrochemistry, 2010, 40(1): 13-21.
[20] 涂丽杏, 朱能武, 吴平霄, 等. 羧基化碳纳米管载铂催化剂对微生物 燃料电池阴极氧还原性能的影响[J]. 环境科学, 2013, 34(4): 1617- 1622. Tu Lixing, Zhu Nengwu, Wu Pingxiao, et al. Influence of carboxylic carbon nanotube supported platinum catalyst on cathode oxygen reduction performance of MFC[J]. Environmental Science, 2013, 34(4): 1617-1622.
[21] Dong H, Yu H B, Wang X, et al. Carbon-supported perovskite oxides as oxygen reduction reaction catalyst in single chambered microbial fuel cells[J]. Journal of Chemical Technology and Biotechnology, 2013, 88(5): 774-778.
[22] 刘慧, 刘瑞泉. 聚苯胺/BaCe0.9Gd0.1O3-δ材料的制备、表征与氨敏性能 研究[J]. 电子元件与材料, 2013, 32(1): 27-30. Liu Hui, Liu Ruiquan. Preparation and characterization ammonia sensing property study of polyaniline/BaCe0.9Gd0.1O3-δ material[J]. Electronic Components and Materials, 2013, 32(1): 27-30.
[23] 白立俊, 王许云, 何海波. 微生物燃料电池La0.7Sr0.3CoO3/PANI阴极催 化剂的制备及催化性能[J]. 中国科技论文, 2014, 9(3): 341-345. Bai Lijun, Wang Xuyun, He Haibo. Preparation and characterization of La0.7Sr0.3CoO3/PANI as cathode catalysts for microbial fuel cell[J]. China Science Paper, 2014, 9(3): 341-345.
Outlines

/