The wastewater reuse is an important way out facing the water resource and energy crisis, and the coupled process of the advanced wastewater treatment and the microalgal energy production is an important issue in this respect. In this paper, the activated sludge as the fixing bacteria is immobilized with Chlorella vulgaris and Scenedesmus obliquus, respectively, for the enhanced municipal wastewater treatment. The microalgal growth, the nitrogen and phosphorus removal and the oil production of the coimmobilized microalgae and bacteria, the immobilized microalgae, and the suspended microalgae are then compared. It is shown that the co-immobilized bacteria and algae are better than the immobilized bacteria and the immobilized algae in their effect on the nitrogen and phosphorus removal, and better than the non immobilized algae and bacteria as well, while the co-immobilized bacteria and algae produce much more lipid. When the concentrations of the NH4+ - N and PO43--P in the municipal wastewater are about 25 mg/ L and 3 mg/L, the NH4+ -N and PO43- -P in the wastewater are removed completely by the co-immobilized Secenedesmus obliquus and bacteria, whereas the lipid yield of C. vulgaris reaches 16.5%.
[1] 黄晟, 吴慧英, 陈建红. 城市污水除磷中的有关问题[J]. 重庆环境科 学, 2001, 23(5): 5-9. Huang Sheng, Wu Huiying, Chen Jianhong. Discussion on phosphorus removal in the wastewater of the city[J]. Chongqing Environmental Science, 2001, 23(5): 5-9.
[2] 郑兴灿. 城市污水生物除磷脱氮工艺方案的选择[J]. 给水排水, 2000, 26(5): 115-118. nitrogen and phosphorus in city sewage[J]. Water Supply Drainage, 2000, 26(5): 115- 118.
[3] 邢丽贞, 张向阳, 张波, 等. 藻菌固定化去除污水中氮磷营养物质的初 步研究[J]. 环境科学与技术, 2006, 29(1): 33- 35. Xing Lizhen, Zhang Xiangyang, Zhang Bo, et al. Preliminary study on removal of nitrogen and phosphorus with co-immobilized microalgae and bacteria[J]. Environmental Science and Technology, 2006, 29(1): 33-35.
[4] Mata T M, Martins A A, Csetano N S. Microalgae for biodiesel production and other applications: A review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 217-232.
[5] Huang G H, Chen F, Wei D, et al. Biodiesl production by microalgal biotechnology[J]. Applied Energy, 2010, 87(1): 38-46.
[6] Pittman J K, Dean A P, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources[J]. Bioresource Technology, 2011, 102(1): 17-25.
[7] 胡洪营, 李鑫, 杨佳. 基于微藻细胞培养的水质深度净化与高价值生 物质生产耦合技术[J]. 生态环境学报, 2009, 18(3): 1122-1127. Hu Hongying, Li Xin, Yang Jia. Purification and high value of coupling technique of deep water biomass production based on microalgae cultivation[J]. Ecology and Environmental Sciences, 2009, 18(3): 1122- 1127.
[8] 胡洪营, 李鑫. 利用污水资源生产微藻生物柴油的关键技术及潜在分 析[J]. 生态环境学报, 2010, 19(3): 739-744. Hu Hongying, Li Xin. The key technology of utilization of sewage resources in the production of microalgal biodiesel and potential analysis[J]. Ecology and Environmental Sciences, 2010, 19(3): 739-744.
[9] Converti A, Casazza A A, Oritz E Y, et al. The effect of temperature and nutrient concentration on the growth, nutrient uptake, and lipid accumulation of a freshwater microalgae Scenedesmus sp.[J]. Bioresource Technology, 2010, 101(14): 5494-5500.
[10] Hu H H, Gao K S. Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration[J]. Biotechnology Letters, 2006, 28(13): 987-9922.
[11] De-Bashan L E, Hernandez J P, Bashan Y. Microalgae growth-promoting bacteria as“helps”for microalgae: A novel approach for removing ammonium and phosphorus from municipal wastewater[J]. Water Research, 2004, 38(19): 466-474.
[12] Su Y, Mennerich A, Urban B. Comparison of nutrient removal capacity and biomass settleability of four highpotential microalgal species[J]. Bioresource Technology, 2012, 124: 157-162.
[13] Li X, Hu H Y, Yang J. Lipid accumulation and nutrient removal properties of a newly isolate freshwater microalgae, Scenedesmus sp. LX1 growing in secondary effluent[J]. New Biotechnology, 2010, 27(1): 59-63.
[14] Feng Y J, Li C, Zhang D W. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium[J]. Bioresource Technology, 2011, 102(1): 101-105.
[15] 王爱丽, 宋志慧, 王福明. 藻菌混合固定化及其对污水的净化[J]. 环境 污染与防治, 2005, 27(9): 654-657. Wang Aili, Song Zhihui, Wang Fuming. Phycomycete mixed immobilization and purification of sewage[J]. Environmental Pollution and Control, 2005, 27(9): 654-657.
[16] 寇希元, 张晓青, 张雨山, 等. 固定化藻菌去除海水冲厕污水中氮磷 的实验研究[J]. 环境工程学报, 2011, 5(12): 2703-2706. Kou Xiyuan, Zhang Xiaoqing, Zhang Yushan, et al. Experimental study on the removal of nitrogen and phosphorus in seawater toilet flushing sewage with immobilized microalgae and bacteria[J]. Journal of Environmental Engineering, 2011, 5(12): 2703-2706.
[17] 范唯. 固定化藻菌系统处理焦化废水的模拟研究[D]. 武汉: 武汉科技 大学, 2008. Fan Wei. Simulation study on treatment of coking wastewater by immobilized algae and bacteria[D]. Wuhan: Wuhan University of Science and Technology, 2008.
[18] Battistoni P, Pavan P, Cecchi. EPhosphate removal in real anaerobic supematants modelling and performance of a fluidized bed reactor[J]. Water Science and Technology, 1998, 38(1): 275-283.
[19] Lind B B, Banz, Byden S. Nutent recovery from human urine by struvite crystallization with ammonia adsorption on zeoliteand wollastonite[J]. Bioresources Technology, 2000, 73(2): 169-174.
[20] Kazuyoshi S, Yasuo T, Takashi O, et al. Removal of phosphate magnesium and calcium from swine wasterwater through crystallization enhanced by aeration[J]. Water Research, 2002, 36(12): 299l-2998.
[21] 余雄奎. 固定化藻菌生物修复富营养化水体的模拟研究[D]. 武汉: 武 汉科技大学, 2008. Yu Xiongkui. Simulation study of biological remediation of eutrophic water with immobilized microalgae and bacteria[D]. Wuhan: Wuhan University of Science and Technology, 2008.
[22] 邢丽贞. 固定化藻类去除污水中氮磷及其机理的研究[D]. 西安: 西安 建筑科技大学, 2005. Xing Lizhen. Study on the removal of nitrogen and phosphorus with immobilized algae[D]. Xi′ an: Xi'an University of Architecture and Technology, 2005.
[23] 国家环境保护局. 水和废水监测分析方法[M]. 第3版. 北京: 中国环 境科学出版社, 1989: 254-286. Environmental Protection Administration of China. Water and wastewater monitoring method[M]. 3rd ed. Beijing: Chinese Environment Science Press, 1989: 254-286.
[24] 刘学铭, 于若黔, 梁世中. 分批异样培养小球藻光密度值与干重关系[J]. 微生物学通报, 1999, 5(5): 339-341. Liu Xueming, Yu Ruoqian, Liang Shizhong. Optical density and dry weight relationship of batch strange cultured Chlorella[J]. Journal of Microbiology, 1999, 5(5): 339-341.
[25] Feng G D, Zhang F, Cheng L H, et al. Evaluation of FT-IR and Nile Red methods for microalgal lipid characterization and biomass composition determination[J]. Bioresource Technology, 2013, 128: 107-112.
[26] 王秀, 张小平. 固定化藻菌流化床光生物反应器处理饮料废水[J]. 环 境科学与技术, 2009, 32(4): 137-140. Wang Xiu, Zhang Xiaoping. The beverage wastewater treatment with immobilized algae and bacteria fluidized photobioreactor[J]. Environmental Science and Technology, 2009, 32(4): 137-140.
[27] TakagiM,KarsenoK,YoshidaT.Effectofsaltconcentrationonintracellular accumulation of lipids and triacylglyceride in marine microalgae dunaliella cells[J]. Journal of Bioscience and Bioengineering, 2006, 101 (3): 223-226.
[28] Feng Y J, Li C, Zhang D W. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium[J]. Bioresource Technology, 2011, 102(1): 101-105.