[1] Nicholson J K, Lindon J C, Holmes E. Metabonomics: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11): 1181-1189.
[2] Fiehn O, Kopka J, Dormann P, et al. Metabolite profiling for plant functional genomics[J]. Nature Biotechnology, 2000, 18(11): 1157-1161.
[3] Taylor J, King R D, Altmann T, et al. Application of metabolomics to plant genotype discrimination using statistics and machine learning[J]. Bioinformatics, 2002, 18(Suppl 2): 241-248.
[4] Dixon R A, Strack D. Phytochemistry meets genome analysis, and beyond[J]. Phytochemistry, 2003, 62(6): 815-816.
[5] Koch K. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development[J]. Current Opinion in Plant Biology, 2004, 7(3): 235-246.
[6] Carreno-Quintero N, Bouwmeester H J, Keurentjes J J. Genetic analysis of metabolome-phenotype interactions: From model to crop species[J]. Trends in Genetics, 2013, 29(1): 41-50.
[7] Mitchell-Olds T, Schmitt J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis[J]. Nature, 2006, 441 (7096): 947-952.
[8] D'Auria J C, Gershenzon J. The secondary metabolism of Arabidopsis thaliana: Growing like a weed[J]. Current Opinion in Plant Biology, 2005, 8(3): 308-316.
[9] Sumner L W, Mendes P, Dixon R A. Plant metabolomics: Large-scale phytochemistry in the functional genomics era[J]. Phytochemistry, 2003, 62(6): 817-836.
[10] Saito K, Matsuda F. Metabolomics for functional genomics, systems biology, and biotechnology[J]. Annual Review in Plant Biology, 2010, 61: 463-489.
[11] Zheng P, Allen W B, Roesler K, et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize[J]. Nature Genetics, 2008, 40(3): 367-372.
[12] Keurentjes J J. Genetical metabolomics: Closing in on phenotypes[J]. Current Opinion in Plant Biology, 2009, 12(2): 223-230.
[13] Chen W, Gao Y, Xie W, et al. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism[J]. Nature Genetics, 2014, 46(7): 714-721.
[14] Wen W, Li D, Li X, et al. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights[J]. Nature Communications, 2014, 5(3): 3438-3447.
[15] Keurentjes J J, Fu J, de Vos C H, et al. The genetics of plant metabolism[J]. Nature Genetics, 2006, 38(7): 842-849.
[16] Chan E K F, Rowe H C, Corwin J A, et al. Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana[J]. PLoS Biology, 2011, 9(8): e1001125.
[17] Li H, Peng Z, Yang X, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels[J]. Nature Genetics, 2013, 45(1): 43-50.
[18] Eisenreich W, Bacher A. Advances of high-resolution NMR techniques in the structural and metabolic analysis of plant biochemistry[J]. Phytochemistry, 2007, 68(22-24): 2799-2815.
[19] Ward J L, Baker J M, Beale M H. Recent applications of NMR spectroscopy in plant metabolomics[J]. FEBS Journal, 2007, 274(5): 1126-1131.
[20] Kim H K, Choi Y H, Verpoorte R. NMR-based metabolomic analysis of plants[J]. Nature Protocol, 2010, 5(3): 536-549.
[21] Lisec J, Schauer N, Kopka J, et al. Gas chromatography mass spectrometry-based metabolite profiling in plants[J]. Nature Protocol, 2006, 1(1): 387-396.
[22] Kusano M, Fukushima A, Arita M, et al. Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana[J]. BMC Systems Biology, 2007, 1: 53.
[23] Krone N, Hughes B A, Lavery G G, et al. Gas chromatography/mass spectrometry (GC/MS) remains a preeminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS) [J]. Journal of Steroid Biochemistry, 2010, 121(3-5): 496-504.
[24] De Vos R C H, Moco S, Lommen A, et al. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry[J]. Nature Protocol, 2007, 2(4): 778-791.
[25] Rochfort S J, Trenerry V C, Imsic M, et al. Class targeted metabolomics: ESI ion trap screening methods for glucosinolates based on MSn fragmentation[J]. Phytochemistry, 2008, 69(8): 1671-1679.
[26] Yonekura-Sakakibara K, Tohge T, Matsuda F, et al. Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis[J]. Plant Cell, 2008, 20(8): 2160-2176.
[27] Sawada Y, Akiyama K, Sakata A, et al. Widely-targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants[J]. Plant and Cell Physiology, 2009, 50 (1): 37-47.
[28] Chen W, Gong L, Guo Z, et al. A novel integrated method for largescale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics[J]. Molecular Plant, 2013, 6(6): 1769-1780.
[29] Yao M, Ma L, Humphreys W G, et al. Rapid screening and characterization of drug metabolites using a multiple ion monitoring-dependent MS/MS acquisition method on a hybrid triple quadrupole-linear ion trap mass spectrometer[J]. Journal of Mass Spectrometry, 2008, 43(10): 1364-1375.
[30] Monton M R N, Soga T. Metabolome analysis by capillary electrophoresis-mass spectrometry[J]. Journal of Chromatography A, 2007, 1168(1-2): 237-246.
[31] Levandi T, Leon C, Kaljurand M, et al. Capillary electrophoresis timeof-flight mass spectrometry for comparative metabolomics of transgenic versus conventional maize[J]. Analytical Chemistry, 2008, 80(16): 6329-6335.
[32] Ohkama-Ohtsu N, Oikawa A, Zhao P, et al. A gamma-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis[J]. Plant Physiology, 2008, 148(3): 1603-1613.
[33] Watanabe M, Kusano M, Oikawa A, et al. Physiological roles of the beta-substituted alanine synthase gene family in Arabidopsis[J]. Plant Physiology, 2008, 146(1): 310-320.
[34] Horai H, Arita M, Kanaya S, et al. MassBank: A public repository for sharing mass spectral data for life sciences[J]. Journal of Mass Spectrometry, 2010, 45(7): 703-714.
[35] Afendi F M, Okada T, Yamazaki M, et al. KNApSAcK family databases: Integrated metabolite-plant species databases for multifaceted plant research[J]. Plant and Cell Physiology, 2012, 53(2): e1, doi: 10.1093/pcp/pcr165.
[36] Bais P, Moon-Quanbeck S M, Nikolau B J, et al. Plantmetabolomics. org: Mass spectrometry-based Arabidopsis metabolomics-database and tools update[J]. Nucleic Acids Research, 2012, 40(D1): D1216-D1220.
[37] Tautenhahn R, Cho K, Uritboonthai W, et al. An accelerated workflow for untargeted metabolomics using the METLIN database[J]. Nature Biotechnology, 2012, 30(9): 826-828.
[38] Kopka J, Schauer N, Krueger S, et al. GMD@CSB.DB: The golm metabolome database[J]. Bioinformatics, 2005, 21(8): 1635-1638.
[39] Sawada Y, Nakabayashi R, Yamada Y, et al. RIKEN tandem mass spectral database (ReSpect) for phytochemicals: A plant-specific MS/MS-based data resource and database[J]. Phytochemistry, 2012, 82(1): 38-45.
[40] Neuweger H, Albaum S P, Dondrup M, et al. MeltDB: A software platform for the analysis and integration of metabolomics experiment data[J]. Bioinformatics, 2008, 24(23): 2726-2732.
[41] Cui Q, Lewis I A, Hegeman A D, et al. Metabolite identification via the Madison metabolomics consortium database[J]. Nature Biotechnology, 2008, 26(2): 162-164.
[42] Krumsiek J, Suhre K, Evans A M, et al. Mining the unknown: A systems approach to metabolite identification combining genetic and metabolic information[J]. PLoS Genetics, 2012, 8(10): e1003005.
[43] Luo J, Butelli E, Hill L, et al. AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: Expression in fruit results in very high levels of both types of polyphenol[J]. Plant Journal, 2008, 56(2): 316-326.
[44] Dong X, Chen W, Wang W, et al. Comprehensive profiling and natural variation of flavonoids in rice[J]. Journal of Integrative Plant Biology, 2014, 56(9): 876-886.
[45] Luo J, Fuell C, Parr A, et al. A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed[J]. Plant Cell, 2009, 21(1): 318-333.
[46] Dong X, Gao Y, Chen W, et al. Spatio-temporal distribution of phenolamides and the genetics of natural variation of hydroxycinnamoyl spermidine in rice[J]. Molecular Plant, 2015, 8(1): doi: 10.1093/mp/ssu101.
[47] Chan E K F, Rowe H C, Kliebenstein D J. Understanding the evolution of defense metabolites in Arabidopsis thaliana using genome-wide association mapping[J]. Genetics, 2010, 185(3): 991-1007.
[48] Chan E K, Rowe H C, Hansen B G, et al. The complex genetic architecture of the metabolome[J]. PLoS Genetics, 2010, 6(11): e1001198.
[49] Bowne J B, Erwin T A, Juttner J, et al. Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level[J]. Molecular Plant, 2012, 5(2): 418-429.
[50] Yamakawa H, Hakata M. Atlas of rice grain filling-related metabolism under high temperature: Joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation[J]. Plant and Cell Physiology, 2010, 51(9): 1599-1599.
[51] Rangan P, Subramani R, Kumar R, et al. Recent advances in polyamine metabolism and abiotic stress tolerance[J]. BioMed Research International, 2014, doi:10.1155/2014/239621.
[52] Shi H T, Chan Z L. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway[J]. Journal of Integrative Plant Biology, 2014, 56(2): 114-121.
[53] Kovacs Z, Simon-Sarkadi L, Szucs A, et al. Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat[J]. Amino Acids, 2010, 38(2): 623-631.
[54] Alcazar R, Cuevas J C, Planas J, et al. Integration of polyamines in the cold acclimation response[J]. Plant Science, 2011, 180(1): 31-38.
[55] Rowe H C, Hansen B G, Halkier B A, et al. Biochemical networks and epistasis shape the Arabidopsis thaliana metabolome[J]. Plant Cell, 2008, 20(5): 1199-1216.
[56] Carreno-Quintero N, Acharjee A, Maliepaard C, et al. Untargeted metabolic quantitative trait loci analyses reveal a relationship between primary metabolism and potato tuber quality[J]. Plant Physiology, 2012, 158(3): 1306-1318.
[57] Schauer N, Semel Y, Roessner U, et al. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement[J]. Nature Biotechnology, 2006, 24(4): 447-454.
[58] Matsuda F, Nakabayashi R, Yang Z, et al. Metabolome-genome-wide association study (mGWAS) dissects genetic architecture for generating natural variation in rice secondary metabolism[J]. Plant Journal, 2014, doi: 10.1111/tpj.12681.
[59] Routaboul J-M, Dubos C, Beck G, et al. Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis[J]. Journal of Experimental Botany, 2012, 63(10): 3749-3764.
[60] Toubiana D, Semel Y, Tohge T, et al. Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations[J]. PLoS Genetics, 2012, 8(3): e1002612.
[61] Riedelsheimer C, Lisec J, Czedik-Eysenberg A, et al. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize[J]. PNAS, 2012, 109(23): 8872-8877.
[62] Gong L, Chen W, Gao Y, et al. Genetic analysis of the metabolome exemplified using a rice population[J]. PNAS, 2013, 110(50): 20320-20325.
[63] Huang X, Han B. Natural variations and genome-wide association studies in crop plants[J]. Annual Review of Plant Biology, 2014, 65: 531-551.
[64] Huang X, Zhao Y, Wei X, et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm[J]. Nature Genetics, 2012, 44(1): 32-39.
[65] Miyahara T, Sakiyama R, Ozeki Y, et al. Acyl-glucose-dependent glucosyltransferase catalyzes the final step of anthocyanin formation in Arabidopsis[J]. Journal of Plant Physiology, 2013, 170(6): 619-624.
[66] Kitamura S, Matsuda F, Tohge T, et al. Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants[J]. Plant Journal, 2010, 62(4): 549-559.
[67] Kusano M, Fukushima A, Redestig H, et al. Metabolomic approaches toward understanding nitrogen metabolism in plants[J]. Journal of Experimental Botany, 2011, 62(4): 1439-1453.
[68] Winzer T, Gazda V, He Z, et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine[J]. Science, 2012, 336(6089): 1704-1708.
[69] Geu-Flores F, Sherden N H, Courdavault V, et al. An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis[J]. Nature, 2012, 492(7427): 138-142.