[1] Newman P A, Gleason J F, McPeters R D, et al. Nomalously low ozone over the Arctic[J]. Geophysical Research Letters, 1995, 24(22):2689-2692.
[2] Crutzen P J. The role of NO and NO2 in the chemistry of the troposphere and stratosphere[J]. Annual Review of Earth and Planetary Sciences, 1979, 7(1):443-472.
[3] Singh A, Agrawal M. Acid rain and its ecological consequences[J]. Journal of Environmental Biology, 2007, 29(1):15-24.
[4] Lacis A, Hansen J, Sato M. Climate forcing by stratospheric aerosols[J]. Geophysical Research Letters, 1992, 19(15):1607-1610.
[5] Manabe S, Wetherald R T. On the distribution of climate change resulting from an increase in CO2 content of the atmosphere[J]. Journal of the Atmospheric Sciences, 1980, 37(1):99-118.
[6] 张兴赢, 张鹏, 方宗义, 等. 基于卫星遥感技术的大尺度大气成分监 测研究进展[J]. 气象, 2007, 33(7):3-14. Zhang Xingying, Zhang Peng, Fang Zongyi, et al. Progress in trace gas remoting sensing study based on satellite monitorint[J]. Meteorological Monthly, 2007, 33(7):3-14.
[7] IPCC. Climate change 2013:The physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change[M]. New York, NY:Cambridge University Press, 2014.
[8] Rao C R N, McClain E P, Stowe C C. Remote sensing of aerosols over the oceans using AVHRR data theory, practice and applications[J]. International Journal of Remote Sensing, 1989, 10(45):743-749.
[9] Holben B, Vermote E, Kaufman Y J, et al. Aerosol retrieval over land from AVHRR data-application for atmospheric correction[J]. Geoscience and Remote Sensing, 1992, 30(2):212-222.
[10] Rudolf B H, Joseph M P, Larry L S. Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product[J]. Journal of Geophysical Research:Atmospheres, 1997, 102(D14):16889-16909.
[11] Prospero J M, Ginoux P, Torres O, et al. Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product[J]. Reviews of Geophysics, 2002, 40:21-31.
[12] McGill M J, Vaughan M A, Trepte C R, et al. Airborne validation of spatial properties measured by the CALIPSO lidar[J]. Journal of GeophysicalResearch:Atmospheres,2007:doi:10.1029/2007JD008768.
[13] Griggs M. Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data[J]. Journal of Air Pollution Control Association, 1975, 25:622-626.
[14] Mekler Y H, Quenzel G O, Marcus I. Relative atmospheric aerosol content from ERTS observations[J]. Journal of Geophysical Research:Atmospheres, 1977, 82:967-972.
[15] Koepke P, Quenzel H. Turbidity of the atmosphere determined from satellite calculation of optimum viewing geometry[J]. Journal of Geophysical Research:Atmospheres, 1979, 84(C12):7847-7855.
[16] Kaufman Y J, Tanre D, Remer L A, et al. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer[J]. Journal of Geophysical Research, 1997, 27(D14):17051-17067.
[17] Remer L A, Kaufman Y J, Tanre D, et al. The MODIS aerosol algorithm, products, and validation[J]. Journal of the Atmospheric Science, 2005, 62(4):947-973.
[18] Levy R C, Remer L A. Second-generation operational algorithm:Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance[J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D13):doi:10.1029/2006JD007811.
[19] Savtchenko A, Ouzounov D, Ahmad S, et al. Terra and Aqua MODIS products available from NASA GES DAAC[J]. Advances in Space Research, 2004, 34(4):710-714.
[20] 李晓静, 张鹏, 张兴赢, 等. 中国区域MODIS陆上气溶胶光学厚度产 品检验[J]. 应用气象学报, 2009, 20(2):147-156. Li Xiaojing, Zhang Peng, Zhang Xingying, et al. Validation of aerosol optical thickness product over China with MODIS data operated at NSMC[J]. Journal of Applied Meterological Science, 2009, 20(2):147-156.
[21] Liu J, Xia X, Li Z, et al. Validation of multi-angle imaging spectroradiometer aerosol products in China[J]. Tellus B:Chemical and Physical Meteorology, 2010, 62B:117-124.
[22] Tanré D, Bréon M F, Deuzé L J, et al. Global observation of anthropogenic aerosols from satellite[J]. Geophysical Research Letters, 2001, 28:4555-4558.
[23] Deuzé L J, Bréon M F, Devaux C, et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements
[J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D5):4913-4926.
[24] Winker D M, Hunt W H, McGill M J. Initial performance assessment of CALIOP[J]. Geophysical Research Letters, 2007, 34:doi:10.1029/2007GL030135.
[25] Sassen K. The polarization lidar technique for cloud research:A review and current assessment[J]. Bulletin of the American Meteorological Society, 1991, 72(12):1848-1866.
[26] Thomason L W, Pitts M C, Winker D M. CALIPSO observations of stratospheric aerosols:A preliminary assessment[J]. Atmospheric Chemistry and Physics, 2007, 7(20):5283-5290.
[27] Huang J, Minnis P, Yi Y, et al. Summer dust aerosols detected from CALIPSO over the Tibetan Plateau[J]. Geophysical Research Letters, 2007, 34:doi:10.1029/2007GL029938.
[28] Jackson J M, Liu H, Laszlo I, et al. Suomi-NPP VIIRS aerosol algorithms and data products[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(22):12673-12689.
[29] Liu H, Remer L A, Huang J, et al. Preliminary evaluation of S-NPP VIIRS aerosol optical thickness[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(7):3942-3962.
[30] 杨军, 董超华. 新一代风云极轨气象卫星业务产品及应用[M]. 北京:科学出版社,2010. Yang Jun, Dong Chaohua. The operational products of the new generation Fengyun Polar orbit meteorological satellite and its application[M]. Beijing:Science Press, 2010.
[31] 滕维远. 北京及其周边地区MERSI与MODIS数据气溶胶光学厚度 反演研究[D]. 北京:首都师范大学, 2013. Teng Weiyuan. The study of aerosol retrieval from MERSI and MODIS at Beijing and near-by field[D]. Beijing:Capital Normal University, 2013.
[32] Zhou Y B, Bai J, Zhou Z H, et al. Aerosol optical depth retrieval from FY-3A/MERSI for sand-dust weather over ocean[J]. Journal of Remote Sensing, 2014, 18(4):771-787.
[33] 王中挺, 陈良富, 巩慧, 等. CBERS02B卫星CCD传感器数据反演陆 地气溶胶[J]. 遥感学报, 2009(6):1047-1059. Wang Zhongting, Chen Liangfu, Gong Hui, et al. Modified DDV method of aerosol optical depth inversion over land surfaces from CBERS02B[J]. Journal of Remote Sensing, 2009(6):1047-1059.
[34] 王中挺, 厉青, 陶金花, 等. 环境一号卫星CCD相机应用于陆地气溶 胶的监测[J]. 中国环境科学, 2009(9):902-907. Wang Zhongting, Li Qing, Tao Jinhua, et al. Monitoring of aerosol optical depth over land surface using CCD camera on HJ-1 satellite[J]. China Environmental Science, 2009, 29(9):902-907.
[35] Stolarski R S, Krueger A J, Schoeberl M R, et al. Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease[J]. Nature, 1986, 322:808-811.
[36] Fishman J, Watson C E, Larsen J C, et al. Distribution of tropospheric ozone determined from satellite data[J]. Journal of Geophysical Research:Atmospheres, 1990, 95(D4):3599-3617.
[37] Kim J H, Newchurch M J. Climatology and trends of tropospheric ozone over the eastern Pacific Ocean:The influences of biomass burning and tropospheric dynamics[J]. Geophysical Research Letters, 1996, 23(25):3723-3726.
[38] Thompson A M, Witte J C, McPeters R D, et al. Southern hemisphere additional ozonesondes (SHADOZ) 1998—2000 tropical ozone climatology 1. Comparison with total ozone mapping spectrometer (TOMS) and ground-based measurements[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D2):doi:10.1029/2001JD000967.
[39] Krueger A J. Sighting of El Chichon sulfur dioxide clouds with the nimbus 7 total ozone mapping spectrometer[J]. Science, 1983, 220:1377.
[40] Krueger A J, Walter L S, Bhartia P K, et al. Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer (TOMS) instruments[J]. Journal of Geophysical Research:Atmospheres, 1995, 100(D7):14057-14076.
[41] Pyle D M, Beattie P D, Bluth G J S. Sulphur emissions to the stratosphere from explosive volcanic eruptions[J]. Bulletin of Volcanology, 1996, 57:663-671.
[42] Heath D F, Krueger A J, Roeder H A, et al. The solar backscatter ultraviolet and total ozone mapping spectrometer (SBUV/TOMS) for Nimbus G[J]. Optical Engineering, 1975, 14(4):144323.
[43] Herman J R, Hudson R, McPeters R, et al. A new self-calibration method applied to TOMS and SBUV backscattered ultraviolet data to determine long-term global ozone change[J]. Journal of GeophysicalResearch:Atmospheres, 1991, 96(D4):7531-7545.
[44] McPeters R D, Miles T, Flynn L E, et al. Comparison of SBUV and SAGE II ozone profiles:Implications for ozone trends[J]. Journal of Geophysical Research:Atmospheres, 1994, 99(D10):20513-20524.
[45] Bhartia P K, McPeters R D, Flynn L E, et al. Solar backscatter UV (SBUV) total ozone and profile algorithm[J]. Atmospheric Measurement Techniques, 2013, 6(10):2533-2548.
[46] McPeters R D, Bhartia P K, Haffner D, et al. The version 8.6 SBUV ozone data record:An overview[J]. Journal of Geophysical Research:Atmospheres, 2013, 118:8032-8039.
[47] European Space Agency. GOME global ozone measuring experiment users manual[M]. ESA SP 2-1182, Noordwijk:ESA/ESTEC, 1995.
[48] Burrows J P, Weber M, Buchwitz M, et al. The global ozone monitoring experiment (GOME):Mission concept and first scientific results[J]. Journal of the Atmospheric Sciences, 1999, 56(2):151-175.
[49] Richter A, Wittrock F, Eisinger M, et al. GOME observations of tropospheric BrO in northern hemispheric spring and summer 1997[J]. Geophysical Research Letters, 1998, 25(14):2683-2686.
[50] Chance K, Palmer P I, Spurr R J D, et al. Satellite observations of formaldehyde over North America from GOME[J]. Geophysical Research Letters, 2000, 27(21):3461-3464.
[51] Richter A, Burrows J P. Tropospheric NO2 from GOME measurements. Advances in space research[J]. 2002, 29(11):1673-1683.
[52] Martin R V. An improved retrieval of tropospheric nitrogen dioxide from GOME[J]. Journal of Geophysical Research:Atmospheres, 2002, 107(D20):doi:10.1029/2001JD001027.
[53] Bovensmann H, Burrows J P, Buchwitz M, et al. SCIAMACHY:Mission objectives and measurement modes[J]. Journal of the Atmospheric Sciences, 1999, 56(2):127-150.
[54] Blond N, Boersma K F, Eskes H J, et al. Inter-comparison of SCIAMACHY nitrogen dioxide observations, in situ measurements and air quality modeling results over Western Europe[J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D10):doi:10.1029/2006JD007277.
[55] Zhang X, Zhang P, Zhang Y, et al. The trend, seasonal cycle, and sources of tropospheric NO2 over China during 1997-2006 based on satellite measurement[J]. Science in China, Series D, 2007, 50(12):1877-1884.
[56] Rohen G. Ozone depletion during the solar proton events of October/November 2003 as seen by SCIAMACHY[J]. Journal of Geophysical Research:Space Physics, 2005, 110:doi:10.1029/2004JA010984.
[57] Buchwitz M, Beek R D, Bramstedt K, et al. Global carbon monoxide as retrieved from SCIAMACHY by WFM-DOAS[J]. Atmospheric Chemistry and Physics, 2004, 4(7):1945-1960.
[58] Frankenberg C, Aben I, Bergamaschi P, et al. Global column averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY:Trends and variability[J]. Journal of Geophysical Research:Atmospheres, 2011, 116(D4):doi:10.1029/2010JD014849.
[59] Zhang X Y, Geffen J V, Liao H, et al. Spatiotemporal variations of tropospheric SO2 over China by SCIAMACHY observations during 2004-2009[J]. Atmospheric Environment, 2012, 60:238-246.
[60] Wang X, Zhang X Y, Zhang L Y, et al. Interpreting seasonal changes of low-tropospheric CO2 over China based on SCIAMACHY observations during 2003-2011[J]. Atmospheric Environment, 2015, 103:180-187.
[61] Levelt P F, van den Oord G H J, Dobber M R, et al. The ozone monitoring instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5):1093-1101.
[62] Boersma K F, Eskes H J, Veefkind J P, et al. Near-real time retrieval of tropospheric NO2 from OMI[J]. Atmospheric Chemistry and Physics, 2007, 7(8):2103-2118.
[63] Boersma K F, Jacob D J, Bucsela E J, et al. Validation of OMI tropospheric NO2 observations during INTEX-B and application to constrain NOx emissions over the eastern United States and Mexico[J]. Atmospheric Environment, 2008, 42(19):4480-4497.
[64] Celarier E A, Brinksma E J, Gleason J F, et al. Validation of ozone monitoring instrument nitrogen dioxide columns[J]. Journal of Geophysical Research:Atmospheres, 2008, 113(D15):doi:10.1029/2007JD008908.
[65] Krotkov N A, Carn S A, Krueger A J, et al. Band residual difference algorithm for retrieval of SO2 from the Aura Ozone Monitoring Instrument (OMI) [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5):1259-1266.
[66] Ziemke J R, Chandra S, Duncan B N, et al. Tropospheric ozone determined from Aura OMI and MLS:Evaluation of measurements and comparison with the Global Modeling Initiative's Chemical Transport Model[J]. Journal of Geophysical Research:Atmospheres, 2006, 111(D19):doi:10.1029/2006JD007089.
[67] Huang K, Zhang X Y, Lin Y F. The "APEC Blue" phenomena:Regional emission control effects observed from space[J]. Atmospheric Research, 2015:164:65-75.
[68] Callies J, Corpaccioli E, Eisinger M, et al. GOME-2-Metop's secondgeneration sensor for operational ozone monitoring[J]. ESA Bulletin, 2000, 102:28-36.
[69] Loyola D G, Koukouli M E, Valks P, et al. The GOME-2 total column ozone product:Retrieval algorithm and ground-based validation[J]. Journal of Geophysical Research:Atmospheres, 2011, 116(D7):doi:10.1029/2010JD014675.
[70] Theys N, Roozendael M V, Hendrick F, et al. Global observations of tropospheric BrO columns using GOME-2 satellite data[J]. Atmospheric Chemistry and Physics, 2011, 11(4):1791-1811.
[71] Rix M, Valks P, Hao N, et al. Volcanic SO2, BrO and plume height estimations using GOME-2 satellite measurements during the eruption of Eyjafjallajökull in May 2010[J]. Journal of Geophysical Research:Atmospheres, 2012, 117(D20):doi:10.1029/2011JD016718.
[72] Valks P, Pinardi G, Richter A, et al. Operational total and tropospheric NO2 column retrieval for GOME-2[J]. Atmospheric Measurement Techniques, 2011, 4(7):1491-1514.
[73] Kramarova N A, Nash E R, Newman P A, et al. Measuring the antarctic ozone hole with the new ozone mapping and profiler suite (OMPS)[J]. Atmospheric Chemistry and Physics, 2014, 14(5):2353-2361.
[74] Yang K, Dickerson R R, Carn S A, et al. First observations of SO2 from the satellite Suomi NPP OMPS:Widespread air pollution events over China[J]. Geophysical Research Letters, 2013, 40(18):4957-4962.
[75] Yang K, Carn S A, Ge C, et al. Advancing measurements of tropospheric NO2 from space:New algorithm and first global results from OMPS[J]. Geophysical Research Letters, 2014, 41(13):4777-4786.
[76] Wang Y M, Wang Y J, Wang W H, et al. FY-3 satellite ultraviolet total ozone unit[J]. Chinese Science Bulletin, 2010, 55(1):84-89.
[77] Wang W H, Zhang X Y, An X Q, et al. Analysis for retrieval and validation results of FY-3 total ozone unit (TOU)[J]. Chinese Science Bulletin, 2010, 66(26):3037-3043.
[78] Wang W H, Zhang X Y, Wang Y M, et al. Introduction to the FY-3A total ozone unit:Instrument, performance and results[J]. International Journal of Remote Sensing, 2011, 32(17):4749-4758.
[79] Zhang Y, Wang W H, Li X Y, et al. Anomalously low ozone of 1997 and 2011 Arctic spring:Monitoring results and analysis[J]. Advances in Polar Science, 2012, 2(23):82-86.
[80] Wang W H, Flynn L E, Zhang X Y, et al. Cross-calibration of the total ozone unit (TOU) with the ozone monitoring instrument (OMI) and SBUV/2 for environmental applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(12):4943-4955.
[81] Huang F X, Liu N Q, Zhao M X, et al. Vertical ozone profiles deduced from measurements of SBUS on FY-3 satellite[J]. Chinese Science Bulletin, 2010, 55(10):943-948.
[82] Huang F X, Huang Y, Flynn L E, et al. Radiometric calibration of the solar backscatter ultraviolet sounder and validation of ozone profile retrievals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(12):4956-4964.
[83] Liu N Q, Huang F X, Wang W H. Monitoring of the 2011 spring low ozone events in the arctic region[J]. Chinese Science Bulletin, 2011, 56(27):2893-2896.
[84] Myhre G, Highwood E J, Shine K P, et al. New estimates of radiative forcing due to well mixed greenhouse gases[J]. Geophysical Research Letters, 1998, 25(14):2715-2718.
[85] Kuze A, Suto H, Nakajima M, et al. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring[J]. Applied Optics, 2009, 48(35):6716-6733.
[86] Yokota T N, Eguchi Y Y, Ota Y, et al. Global concentrations of CO2 and CH4 retrieved from GOSAT:First preliminary results[J]. Scientific Online Letters on the Atmosphere, 2009, 5:160-163.
[87] Yoshida Y, Kikuchi N, Morino I, et al. Improvement ofthe retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data[J]. Atmospheric Measurement Techniques, 2013, 6 (6):1533-1547.
[88] Yoshida Y, Kikuchi N, Yokota T. On-orbit radiometric calibration of SWIR bands of TANSO-FTS onboard GOSAT[J]. Atmospheric Measurement Techniques, 2012, 5(10):2515-2523.
[89] Yoshida Y, Ota Y, Eguchi N, et al. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite[J]. Atmospheric Measurement Techniques, 2011, 4(4):717-734.
[90] O'Dell C W, Connor B, Bösch H, et al. The ACOS CO2 retrieval algorithm-Part 1:Description and validation against synthetic observations[J]. Atmospheric Measurement Techniques, 2012, 5(1):99-121.
[91] Crisp D, Fisher B M, O'Dell C, et al. The ACOS CO2 retrieval algorithm and ash. Part II:Global XCO2 data characterization[J]. Atmospheric Measurement Techniques, 2012, 5(4):687-707.
[92] Butz A, Guerlet S, Hasekamp O, et al. Toward accurate CO2 and CH4 observations from GOSAT[J]. Geophysical Research Letters, 2011, 38 (14):doi:10.1029/2011gl047888.
[93] Liu Y, Yang D, Cai Z. A retrieval algorithm for TanSat XCO2 observation:Retrieval experiments using GOSAT data[J]. Chinese Science Bulletin, 2013, 58(13):1520-1523.
[94] Zhou M Q, Zhang X Y, Wang P C, et al. XCO2 satellite retrieval experiments in short-wave infrared spectrum and ground-based validation[J]. Science in China, Series D, 2015, 58(7):1191-1197.
[95] Kadygrov N, Maksyutov N S, Eguchi T, et al. Role of simulated GOSAT total column CO2 observations in surface CO2 flux uncertainty reduction[J]. Journal of Geophysical Research:Atmospheres, 2009, 114 (D21):doi:10.1029/2008JD011597.
[96] Fraser A, Palmer P I, Feng L, et al. Estimating regional methane surface fluxes:The relative importance of surface and GOSAT mole fraction measurements[J]. Atmospheric Chemistry and Physics, 2013, 13(11):5697-5713.
[97] Basu S, Guerlet S, Butz A, et al. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2[J]. Atmospheric Chemistry and Physics, 2013, 13(17):8695-8717.
[98] Butz A, Hasekamp O P, Frankenberg C, et al. Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered nearinfrared sunlight:Accounting for aerosol effects[J]. Applied Optics, 2009, 48(18):3322-3336.
[99] Mao J, Kawa S R. Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight[J]. Applied Optics, 2004, 43(4):914-927.
[100] Taylor T E, O'Dell C W, O'Brien D M, et al. Comparison of cloudscreening methods applied to GOSAT near-infrared spectra[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1):295-309.
[101] Frankenberg C, Butz A, Toon G C. Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2A-band spectra of reflected sun-light[J]. Geophysical Research Letters, 2011, 38(3):doi:10.1029/2010gl045896.
[102] Frankenberg C, Fisher J B, Worden J, et al. New global observations of the terrestrial carbon cycle from GOSAT:Patterns of plant fluorescence with gross primary productivity[J]. Geophysical Research Letters, 2011, 38(17):doi:10.1029/2011gl048738.
[103] Kyrölö E, Tamminen J, Leppelmeier G W, et al. GOMOS on Envisat:An overview[J]. Advances in Space Research, 2004, 33(7):1020-1028.
[104] Barath F T, Chavez M C, Cofield R E, et al. The upper atmosphere research satellite microwave limb sounder instrument[J]. Journal of Geophysical Research:Atmospheres, 1993, 98(D6):10751-10762.
[105] Llewellyn E J, Lloyd N D, Degenstein D A, et al. The OSIRIS instrument on the Odin spacecraft[J]. Canadian Journal of Physics, 2004, 82(6):411-422.
[106] Clerbaux C, George M, Turquety S, et al. CO measurements from the ACE-FTS satellite instrument:Data analysis and validation using ground-based, airborne and space-borne observations[J]. Atmospheric Chemistry and Physics, 2008, 8(9):2569-2594.
[107] Beer R. TES on the Aura mission:Scientific objectives, measurements, and analysis overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5):1102-1105.
[108] Lee S, Hong Y, Song C K, et al. Plan of Korean geostationary environment satellite over Asia-Pacific region[C]//EGU General Assembly Conference Abstracts. 2010, 12:7595.
[109] European Space Agency, ESA. GMES Sentinels 4 and 5 Mission requirements document[R]. EOP-SMA/1507, 2007:87.
[110] GEO-CAPE. Geostationary coastal and air pollution events[R]. GEOCAPE Mission NASA Workshop Report, 2008:50.
[111] Abshire J B, Riris H, Allan G R, et al. A lidar approach to measure CO2 concentrations from space for the ASCENDS Mission[J]. Remote Sensing, 2010, 7832:78320D-78320D-13.