Hot dry rock, which will become one of the most important resources in the future, can be developed and utilized using enhanced geothermal systems (EGSs). Hot dry rock resources are abundant in Gonghe basin, Qinghai province. Complex waterthermal coupling processes occur during water flow in the reservoir, and the power generation capacity of power plants is dependent on the EGS operation scheme. Based on the deep geological conditions of Qiabuqia in Gonghe basin, we established a numerical model to characterize the hydrothermal features of EGS, researched the temporal and spatial distribution of the temperature field and pressure field, and analyzed the influence of injection temperature and flow rate on heat extraction rate. The results show that the maximum heat extraction rate reached 11Mw under the base scheme (20kg/s, 60oC), and the reservoir life was 22 years. The heat extraction rate will increase by about 10% with 10oC increase of injection temperature, while the reservoir life remains the same. Increased flow rate will lead to a greater rate of heat extraction but shorter reservoir life.
YUE Gaofan
,
DENG Xiaofei
,
XING Linxiao
,
LIN Wenjing
,
LIU Feng
,
LIU Yanguang
,
WANG Guiling
. Numerical simulation of hot dry rock exploitation using enhanced geothermal systems in Gonghe Basin[J]. Science & Technology Review, 2015
, 33(19)
: 62
-67
.
DOI: 10.3981/j.issn.1000-7857.2015.19.010
[1] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. Wang Jiyang, Hu Shengbiao, Pang Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32):25-31.
[2] 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45. Xu Tianfu, Zhang Yanjun, Zeng Zhaofa, et al. Technology progress in an enhanced geothermal system (Hot Dry Rock) [J]. Science & Technology Review, 2012, 30(32): 42-45.
[3] 蔺文静, 刘志明, 马峰, 等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5): 807-811. Lin Wenjing, Liu Zhiming, Ma Feng, et al. An estimation of HDR resources in China's mainland[J]. Acta Geoscientica Sinica, 2012, 33 (5): 807-811.
[4] Massachusetts Institute of Technology. The future of geothermal energy: Impact of enhanced geothermal systems (EGS) on the United States in the 21st century[R]. MIT: Cambridge, MA, 2006.
[5] Evans K. Enhanced/Engineered Geothermal System: An introduction with overviews of deep systems built and circulated to date[R]. Beijing: China Geothermal Development Forum, 2010: 395-418.
[6] Pashkevich R I, Taskin V V. Numerical simulation of exploitation of supercritical Enhanced Geothermal System[R]. California: Proceedings of thirty-fourth workshop on Geothermal Reservoir Engineering, 2009.
[7] Baujard C, Bruel D. Numerical study of the impact of fluid density on the pressure distribution and stimulated volume in the Soultz HDR reservoir[J]. Geothermics, 2006, 35: 607-621.
[8] PruessK. Enhanced geothermal system (EGS) using CO2 as working fluid-A novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35: 351-367.
[9] Spycher N, Pruess K. A phase-partitioning model for CO2-brine mixtures at elevated temperatures and pressures: Application to CO2-enhanced geothermal systems[J]. Transport in Porous Media, 2010, 82: 173-196.
[10] Borgia A, Pruess K, Kneafsey T J, et al. Numerical simulation of salt precipitation in the fractures of a CO2-enhanced geothermal system[J]. Geothermics, 2012, 44: 13-22.
[11] 雷宏武, 金光荣, 李佳琦, 等. 松辽盆地增强型地热系统(EGS)地热能 开发热-水动力耦合过程[J]. 吉林大学学报: 地球科学版, 2014, 44 (5): 1633-1646. Lei Hongwu, Jin Guangrong, Li Jiaqi, et al. Coupled Thermal-Hydrodynamic Process for Geothermal Energy Exploitation in Enhanced Geothermal System at Songlaio Basin, China[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(5): 1633-1646.
[12] 严维德, 王焰新, 高学忠, 等. 共和盆地地热能分布特征与聚集机制 分析[J]. 西北地质, 2013, 46(4): 223-230. Yan Weide, Wang Yanxin, Gao Xuezhong, et al. Distribution and aggregation mechanism of geothermal energy in Gonghe Basin[J]. Northwestern Geology, 2013, 46(4): 223-230.
[13] 赵振, 陈惠娟, 马建青, 等. 青海省共和盆地恰卜恰地区地热资源评 价与开发利用[J]. 青海环境, 2009(2): 81-84. Zhao Zhen, Chen Huijuan, Ma Jianqing, et al. Evaluation and utilization of geothermal energy at Qiabuqia in Gonghe Basin, China[J]. Journal of Qinghai Environment, 2009(2): 81-84.
[14] 孙知新, 李百祥, 王志林. 青海共和盆地存在干热岩可能性探讨[J]. 水文地质工程地质, 2011, 38(2): 119-129. Sun Zhixin, Li Baixiang, Wang Zhilin. Exploration of the possibility of hot dry rockoccurring in the Qinghai Gonghe Basin[J]. Hydrogeology & Engineering Geology, 2011, 38(2): 119-129.
[15] Kohl T, Hopkirk R J.“FRACTure”: A simulation code for forced fluid flow and transport in fracture, porous rock[J]. Geothemics, 1995, 24 (3): 333-343.
[16] Yamamoto T, Kitano K, Fujimitsu Y, et al. Application of simulation code, GEOTH3D, on the Ogachi HDR site[R]. Stanford University: Procedings of the 22nd Annual Workshop on Geothermal Reservoir Engineering, 1997.
[17] Pruess K, Curt O, George M. TOUGH2 user's guide, version 2.0[D]. Berkeley: University of California, 1999.
[18] Xu T, Pruess K. Numerical simulation of injectivity effects of mineral scaling and clay swelling in a fractured geothermal reservoir[J]. Geothermal Resources Council Transactions, 2004, 28: 269-276.
[19] Zeng Y C, Su Z, Wu N Y. Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field[J]. Energy, 2013, 56: 92-107.
[20] Rees D, Bassom A, Siddheshwar P. Local thermal non-equilibrium effects arising from the injection of a hot fluid into a porous medium[J]. Journal of Fluid Mechanics, 2008, 294: 379-398.
[21] He L W, Jin Z H. A local thermal nonequilibriumporoelastic theory for fluid saturated porous media[J]. Journal of Thermal Stress, 2010, 33 (8): 799-813.
[22] Zhang Y J, Li Z W, Guo L L, et al. Electricity generation from enhanced geothermal systems by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells: A case study in Xujiaweizi area in Daqing Oilfield, China[J]. Energy, 2014, 78: 788-805.