In order to design a thermal protection system for hypersonic vehicles, it is important to predict the heat transfer rate precisely. For this purpose, an effective method for calculating the heat flux at the stagnation point for hypersonic vehicles is developed. The variable specific heat of air is considered in the calculation of changes of temperature behind the shock wave, while the effect of real gas is considered in the calculation of the heat flux at the stagnation point. The air's heat capacity and the ratio of the specific heat are calculated based on the Peng-Robinson equation of state, and their fitting formula can be obtained against temperature. The typical stagnation point heat flux for a blunt body is calculated. The results are compared with the experimental data and data from the fitting formula in literature. The results show that the method is convenient and accurate. Reliable data can be provided for the aero-thermal calculation in the initial design and for the reasonable choice of the thermal protection system for hypersonic vehicles.
LUO Guangqi
,
HU Shendao
,
LI You
,
WU Tao
,
ZENG Jianchen
. The calculation of the heat flux at the stagnation point in consideration of variable specific heat for hypersonic vehicle[J]. Science & Technology Review, 2015
, 33(22)
: 55
-59
.
DOI: 10.3981/j.issn.1000-7857.2015.22.008
[1] 陈小平, 李新亮, 樊箐. 变比热真实气体效应的高超声速槽道湍流直 接数值模拟[J]. 中国科学: 物理学力学天文学, 2011, 41(8): 969- 979. Chen Xiaoping, Li Xinliang, Fan Jing. Direct numerical simulation of hypersonic turbulent channel flow in thermally perfect gas[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2011, 41(8): 969-979.
[2] 欧阳水吾, 谢中强. 高温非平衡空气绕流[M]. 北京: 国防工业出版社, 2001. Ouyang Shuiwu, Xie Zhongqiang. High temperature non- equilibrium air flow around[M]. Beijing: National Defence Industry Press, 2001.
[3] 杨凯, 原志超, 朱强华, 等. 高超声速热化学非平衡钝体绕流数值模拟[J]. 推进技术, 2014, 35(12): 1585-1591. Yang Kai, Yuan Zhichao, Zhu Qianghua, et al. Numerical simulation of hypersonic thermochemical nonequilibrium blunt body flows[J]. Journal of Propulsion Technology, 2014, 35(12): 1585-1591.
[4] 程晓丽, 苗文博, 周伟江. 真实气体效应对高超声速轨道器气动特性 的影响[J]. 宇航学报, 2007, 28(2): 259-264. Cheng Xiaoli, Miao Wenbo, Zhou Weijiang. Effects of gas on aerody- namic characteristic of a hypersonic orbiter[J]. Journal of Astronautics, 2007, 28(2): 259-264.
[5] 蕫维中, 丁明松, 高铁锁, 等. 热化学非平衡模型和表面温度对气动热 计算影响分析[J]. 空气动力学学报, 2013, 31(6): 692-698. Dong Weizhong, Ding Mingsong, Gao Tiesuo, et al. The influence of thermo- chemical non- equilibrium model and surface temperature on heat transfer rate[J]. Atca Aerodynamics Sinica, 2013, 31(6): 692-698.
[6] 张胜涛, 张庆兵, 王友进, 等. 高超声速气动热化学非平衡效应数值分 析研究[J]. 现代防御技术, 2012, 40(5): 167-173. Zhang Shengtao, Zhang Qingbing, Wang Youjin, et al. Numerical study of chemical non-equilibrium effect on hypersonic aerodynamic heating[J]. Modern Defense Technology, 2012, 40(5): 167-173.
[7] 张胜涛, 陈方, 刘洪. 高超声速飞行器气动热环境的化学非平衡效应 数值研究[J]. 计算物理, 2014, 31(1): 33-43. Zhang Shengtao, Chen Fang, Liu Hong. Numerical study of chemical nonequilibrium effect on aeroheating environment of hypersonic vehicles[J]. Chinese Journal of Computational Physics, 2014, 31(1): 33-43.
[8] 吕丽丽. 高超声速气动热工程算法研究[D]. 西安: 西北工业大学, 2005. Lü Lili. Engineering algorithm for aerodynamic heating of hypersonic[D]. Xi'an: Northwestern Ploytechnical University, 2005.
[9] 吕丽丽, 张伟伟, 叶正寅. 高超声速再入体表面热流计算[J]. 应用力学 学报, 2006, 23(2): 259-262. Lü Lili, Zhang Weiwei, Ye Zhengyin. Predicting heating distributions for hypersonic reentry bodies[J]. Chinese Journal of Applied Mechanics, 2006, 23(2): 259-262.
[10] 李建林, 程兴华, 杨涛. 高超声速二维钝楔激波快速计算方法[J]. 计 算机仿真, 2013, 30(4): 29-32. Li Jianlin, Cheng Xinghua, Yang Tao. Rapid calculate method for shock of hypersonic 2-D blunt wedge[J]. Computer Simulation, 2013, 30(4): 29-32.
[11] 杨亚晶, 何茂刚, 张颖. 混合制冷剂比定压热容的理论推算[J]. 化学 工程, 2007, 35(10): 42-45. Yang Yajing, He Maogang, Zhang Ying. Estimation of isobaric specific heat for mixing refrigerant[J]. Chemical Engineering, 2007, 35(10): 42-45.
[12] 苏长荪, 谭连诚, 刘桂玉. 高等工程热力学[M]. 北京: 高等教育出版 社, 1987. Su Changsun, Tan Liancheng, Liu Guiyu. Higher engineering thermo- dynamics[M]. Beijing: Higher Education Press, 1987.
[13] Kee R J, Rupley F M, Miller J A. The chemkin thermodynamic data base[R]. Albuquerque, NM: Sandia Natioinal Laboratories, 1991.
[14] Witte D W, Tatum K E. Computer code for determination of thermally perfect gas properties[R]. Washington, DC: NASA, 1994.
[15] Fay J A, Riddle F R. Theory of stagnation point heat transfer in disso- ciated air[J]. Journal of the Aeronautical Science, 1985, 25(2): 73-85.
[16] Anderson J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Beijing: Aviation Industry Press, 2014.
[17] Rose P H, Stark W I. Stagnation point heat transfer measurement in dissociated air[J]. Journal of the Aeronautical Science, 1958, 25(2): 86- 97.
[18] Anderson J D. Modern compressible flow: With historical perspective[M]. New York: McGraw-Hill, 2003.