[1] Esau K. Plant anatomy [M]. New York: John WIley & Sons Inc, 1953.
[2] Eames A J. Morphology of the angiosperms [M]. New York: McGraw- Hill Book Company, Inc, 1961.
[3] Waites R, Hudson A. phantastica: A gene required for dorsoventrality of leaves in Antirrhinum majus[J]. Development, 1995, 121: 2143-2154.
[4] Tasaka M. From central-peripheral to adaxial-abaxial [J]. Trends in Plant Science, 2001, 6: 548-550.
[5] Arber E A N, Parkin J. On the origin of angiosperms[J]. Journal of the Linnean Society of London, Botany, 1907, 38: 29-80.
[6] Cronquist A. The evolution and classification of flowering plants[M]. Bronx: New York Botanical Garden, 1988.
[7] Florin R. The morphology of Trichopitys heteromorpha Saporta, a seed plant of Palaeozoic age, and the evolution of the female flowers in the Ginkgoinae[J]. Acta Horti Bergiani, 1949, 15: 79-109.
[8] Meeuse A D J. From ovule to ovary: A contribution to the phylogeny of the megasporangium[J]. Acta Biotheoretica, 1963, XVI: 127-182.
[9] Herr J M J. The origin of the ovule[J]. American Journal of Botany, 1995, 82: 547-564.
[10] Wang X, Luo B. Mechanical pressure, not genes, makes ovulate parts leaf-like in Cycas[J]. American Journal of Plant Sciences, 2013, 4: 53-57.
[11] Sattler R, Lacroix C. Development and evolution of basal cauline placentation: Basella rubra[J]. American Journal of Botany, 1988, 75: 918-927.
[12] Wilson C L. The telome theory and the origin of the stamen [J]. American Journal of Botany, 1942, 29: 759-764.
[13] Taylor D W. Angiosperm ovule and carpels: their characters and polarities, distribution in basal clades, and structural evolution [J]. Postilla, 1991, 208: 1-40.
[14] Wang X. The dawn angiosperms[M]. Heidelberg: Springer, 2010.
[15] Engler A, Prantl K. Die natuerlichen Pflanzenfamilien, III [M]. Leipizig: Verlag von Wilhelm Engelmann, 1898.
[16] Bhattacharyya B, Johri B M. Flowering plants —— Taxonomy and phylogeny[M]. Berlin: Springer-Verlag, 1998.
[17] Bessey C E. Phylogeny and taxonomy of the angiosperms[J]. Botanical Gazette, 1897, 24: 145-178.
[18] Canright J E. The comparative morphology and relationships of the Magnoliaceae. III. Carpels[J]. American Journal of Botany, 1960, 47: 145-155.
[19] Carlquist S. Toward acceptable evolutionary interpretation of floral anatomy [J]. Phytomorphology, 1969, 19: 332-362.
[20] Takhtajan A. Flowering plants, origin and dispersal[M]. Edinburgh: Oliver & Boyd Ltd, 1969.
[21] Qiu Y L, Lee J, Bernasconi-Quadroni F, et al. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes[J]. Nature, 1999, 402: 404-407.
[22] APG. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III[J]. Botanical Journal of Linnean Society, 2009, 161: 105-121.
[23] Endress P K, Doyle J A. Reconstructing the ancestral angiosperm flower and its initial specializations[J]. American Journal of Botany, 2009, 96: 22-66.
[24] Crane P R. Phylogenetic analysis of seed plants and the origin of angiosperms[J]. Annals Missouri Botanical Garden, 1985, 72: 716-793.
[25] Bateman R M, Hilton J, Rudall P J. Morphological and molecular phylogenetic context of the angiosperms: contrasting the 'top- down' and 'bottom-up' approaches used to infer the likely characteristics of the first flowers[J]. Journal of Experimental Botany, 2006, 57: 3471- 3503.
[26] Sun G, Dilcher D L, Zheng S, et al. In search of the first flower: a Jurassic angiosperm, Archaefructus, from Northeast China[J]. Science, 1998, 282: 1692-1695.
[27] Wieland G R. American fossil cycads[M]. Washington DC: The Wilkens Sheiry Printing Co, 1906.
[28] Florin R. Evolution in cordaites and conifers[J]. Acta Horti Bergiani, 1951, 15: 285-388.
[29] Zhou Z, Zheng S. The missing link in Ginkgo evolution[J]. Nature, 2003, 423: 821-822.
[30] Rothwell G W, Crepet W L, Stockey R A. Is the anthophyte hypothesis alive and well? New evidence from the reproductive structures of Bennettitales[J]. American Journal of Botany, 2009, 96: 296-322.
[31] Parkin J. The phylogenetic classification of flowering plants[J]. Nature, 1925, 115: 385-387.
[32] Liu W-Z, Hilu K, Wang Y-L. From leaf and branch into a flower: Magnolia tells the story [J]. Botanical Studies, 2014, 55: 28.
[33] Sun G, Ji Q, Dilcher D L, et al. Archaefructaceae, a new basal angiosperm family [J]. Science, 2002, 296: 899-904.
[34] Ji Q, Li H, Bowe M, et al. Early Cretaceous Archaefructus eoflora sp. nov. with bisexual flowers from Beipiao, Western Liaoning, China [J]. Acta Geologica Sinica, 2004, 78: 883-896.
[35] Wang X, Zheng X T. Reconsiderations on two characters of early angiosperm Archaefructus[J]. Palaeoworld, 2012, 21: 193-201.
[36] Goethe J W V. Versuch die Metamorphose der Pflanzen zu erklären[M]. Gotha: Carl Wilhelm Ettinger, 1790.
[37] Zimmermann W. Die Phylogenie der Pflanzen[M]. Stuttgart: Fischer, 1959.
[38] Arber A. The natural philosophy of plant form[M]. Cambridge: University Press, 1950.
[39] Arber A. Goethe's botany [J]. Chronica Botanica, 1946, 10: 63-126.
[40] Worsdell W C. The vascular structure of the sporophylls of the Cycadaceae [J]. Annals of Botany, 1898, os-12: 203-241.
[41] Stevenson D W. Morphology and systematics of the Cycadales [J]. Memoirs of the New York Botanical Garden, 1990, 57: 8-55.
[42] Rousseau P, Vorster P J, Wyk A E V. Reproductive anomalies in Encephalartos (Zamiaceae) [C]//Calonje M. Cycad 2015, 10th International Conference on Cycad Biology. Medellín, Colombia: Cycad 2015 Organizing Committee, 2015, 53.
[43] Eames A J. The relationships of Ephedrales[J]. Phytomorphology 1952, 2: 79-100.
[44] Rothwell G W, Stockey R A. Evolution and phylogeny of Gnetophytes: Evidence from the anatomically preserved seed cone Protoephedrites eamesii gen. et sp. nov. and the seeds of several Bennettitalean species[J]. International Journal of Plant Sciences, 2013, 174: 511-529.
[45] Kerp H, Wellman C H, Krings M, et al. Reproductive organs and in situ spores of Asteroxylon mackiei Kidston & Lang, the most complex plant from the Lower Devonian Rhynie chert[J]. International Journal of Plant Sciences, 2013, 174: 293-308.
[46] Taylor D W, Kirchner G. The origin and evolution of the angiosperm carpel [M]// Taylor D W, Hickey L J. Flowering Plant Origin, Evolution & Phylogeny. New York: Chapman & Hall, 1996.
[47] Melchior H A. Engler's Syllabus der Pflanzenfamilien. II. Angiospermen Übersicht über die Florengebiete der Erde[M]. Berlin: Gebrüder Borntraeger, 1964.
[48] Corner E J H. The seeds of dicotyledons[M]. Cambridge: Cambridge University Press, 1976.
[49] Foster A S, Gifford E M. Comparative morphology of vascular plants[M]. W H Freeman and Company, 1974.
[50] Van Heel W A. A SEM-investigation on the development of free carpels [J]. Blumea, 1981, 27: 499-522.
[51] Buzgo M, Soltis P S, Soltis D E. Floral developmental morphology of Amborella trichopoda (Amborellaceae)[J]. International Journal of Plant Sciences, 2004, 165: 925-947.
[52] Williams J H. Amborella trichopoda (Amborellaceae) and the evolutionary developmental origins of the angiosperm progamic phase[J]. American Journal of Botany, 2009, 96: 144-165.
[53] Lister G. On the origin of the placentas in the tribe Alsineae of the order Caryophylleae[J]. Journal of Linnean Society Botany, 1884, 20: 423-429.
[54] Zheng H C, Ma S W, Chai T Y. The ovular development and perisperm formation of Phytolacca americana (Phytolaccaceae) and their systematic significance in Caryophyllales[J]. Journal of Systematics and Evolution, 2010, 48: 318-325.
[55] Guo X M, Xiao X, Wang G X, et al. Vascular anatomy of kiwi fruit and its implications[J]. Frontiers in Plant Science, 2013, 4: 391.
[56] Bechtel A R. The floral anatomy of the Urticales[J]. American Journal of Botany, 1921, 8: 386-410.
[57] Omori Y, Terabayashi S. Gynoecial vascular anatomy and its systematic implications in Celtidaceae and Ulmaceae (Urticales) [J]. Journal of Plant Research, 1993, 106: 249-258.
[58] Liu W Z, Kang H Q, Zheng H C, et al. An investigation on the sexual reproductive cycle in Tapiscia sinensis [J]. Acta Phytotaxonomica Sinica, 2008, 46: 175-182.
[59] Nuraliev M S, Sokoloff D D, Oskolski A A. Floral anatomy of Asian Schefflera (Araliaceae, Apiales): Comparing variation of flower groundplan and vascular patterns [J]. International Journal of Plant Sciences, 2011, 172: 735-762.
[60] Endress P K. Carpels of Brasenia (Cabombaceae) are completely ascidiate despite a long stigmatic crest[J]. Annals of Botany, 2005, 96: 209-215.
[61] Skinner D J, Hill T A, Gasser C S. Regulation of ovule development[J]. Plant Cell, 2004, 16: S32-S45.
[62] Mathews S, Kramer E M. The evolution of reproductive structures in seed plants: A re-examination based on insights from developmental genetics [J]. New Phytologist, 2012, 194: 910-923.
[63] Roe J L, Nemhauser J L, Zambryski P C. TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis[J]. Plant Cell, 1997, 9: 335-353.
[64] Wynn A N, Seaman A A, Jones A L, et al. Novel functional roles for PERIANTHIA and SEUSS during floral organ identity specification, floral meristem termination, and gynoecial development[J]. Frontiers in Plant Science, 2014, 5: 130.
[65] Angenent G C, Franken J, Busscher M, et al. A novel class of MADS box genes is involved in ovule development in Petunia[J]. The Plant Cell Online, 1995, 7: 1569-1582.
[66] Li H, Liang W, Yin C, et al. Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy [J]. Plant Physiology, 2011, 156: 263-274.
[67] Wang X, Wang S. Xingxueanthus: an enigmatic Jurassic seed plant and its implications for the origin of angiospermy [J]. Acta Geologica Sinica, 2010, 84: 47-55.
[68] Liu Z J, Wang X. A perfect flower from the Jurassic of China [J]. Historical Biology, 2015: 1-13.
[69] Krassilov V. On Montsechia, an angiospermoid plant from the Lower Cretaceous of Las Hoyas, Spain: New data and interpretations [J]. Acta Palaeobotanica, 2011, 51: 181-205.
[70] Gomez B, Daviero-Gomez V, Coiffard C, et al. Montsechia, an ancient aquatic angiosperm[J]. Proceedings of the National Academy of Sciences, 2015.
[71] Hickey L J, Taylor D W. Origin of angiosperm flower[M]//Taylor D W, Hickey L J. Flowering Plant Origin, Evolution & Phylogeny. New York: Chapman and Hall, 1996.
[72] Tucker S C, Kantz K E. Open carpels with ovules in Fabaceae[J]. International Journal of Plant Sciences, 2001, 162: 1065-1073.
[73] Endress P K. Patterns of angiospermy development before carpel sealing across living angiosperms: diversity, and morphological and systematic aspects [J]. Botanical Journal Linnean Society, 2015.
[74] Sokoloff D D, Remizowa M V, Macfarlane T D, et al. Comparative fruit structure in Hydatellaceae (Nymphaeales) reveals specialized pericarp dehiscence in some early- divergent angiosperms with ascidiate carpels [J]. Taxon, 2013, 62: 40-61.
[75] Hufford L. Developmental morphology of female flowers of Gyrostemon and Tersonia and floral evolution among Gyrostemonaceae [J]. American Journal of Botany, 1996, 83: 1471-1487.
[76] Ferrandiz C, Fourquin C, Prunet N, et al. Carpel development Advances in Botanical Research: Academic Press, 2010.
[77] Judd W S, Campbell S C, Kellogg E A, et al. Plant systematics: a phylogenetic approach [M]. Sunderland, MA: Sinauer Associate Inc, 1999.
[78] Tomlinson P B, Takaso T. Seed cone structure in conifers in relation to development and pollination: a biological approach [J]. Canadian Journal of Botany, 2002, 80: 1250-1273.
[79] Zhang Q, Sodmergen, Hu Y S, et al. Female cone development in Fokienia, Cupressus, Chamaecyparis and Juniperus (Cupressaceae)[J]. Acta Botanica Sinica, 2004, 46: 1075-1082.
[80] Hagerup O. On the origin of some angiosperms through Gnetales and the Coniferae. III. The gynaeceum of Salix cinerea [J]. Det Kongelige Danske Videnskabernes Selskab Biologiske Meddelelser, 1938, 14: 1- 34.
[81] Becker A, Saedler H, Theissen G. Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm, Gnetum gnemon [J]. Development Genes and Evolution, 2003, 213: 567-572.
[82] Vazquez-Lobo A, Carlsbecker A, Vergara-Silva F, et al. Characterization of the expression patterns of LEAFY/FLORICAULA and NEEDLY orthologs in female and male cones of the conifer genera Picea, Podocarpus, and Taxus: implications for current evo-devo hypotheses for gymnosperms [J]. Evolution and Development, 2007, 9: 446-459.
[83] Chanderbali A S, Yoo M- J, Zahn L M, et al. Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower [J]. Proceedings of the National Academy of Sciences, 2010, 107: 22570-22575.
[84] Lovisetto A, Guzzo F, Tadiello A, et al. Molecular analyses of MADSbox genes trace back to gymnosperms the invention of fleshy fruits [J]. Molecular Biology and Evolution, 2011.
[85] Carlsbecker A, Sundström J F, Englund M, et al. Molecular control of normal and acrocona mutant seed cone development in Norway spruce (Picea abies) and the evolution of conifer ovule-bearing organs[J]. New Phytologist, 2013, 200: 261-275.
[86] Gramzow L, Weilandt L, Theißen G. MADS goes genomic in conifers: towards determining the ancestral set of MADS- box genes in seed plants[J]. Annals of Botany, 2014, 114: 1407-1429.
[87] Liu Z J, Wang X. An enigmatic Ephedra-like fossil lacking micropylar tube from the Lower Cretaceous Yixian Formation of Liaoning, China[J]. Palaeoworld, 2015, doi:10.1016/j.palwor.2015.07.005.
[88] Hutchinson J. The phylogeny of flowering plants. International congress of plant sciences, section of morphology, histology, and paleobotany[R]. Ithaca, New York, 1926: 413-421.
[89] Takhtajan A. Diversity and classification of flowering plants [M]. New York: Columbia University Press, 1997.
[90] Zhang X. The evolutionary origin of the integument in seed plants, Anatomical and functional constraints as stepping stones towards a new understanding[D]. Bochum: Ruhr-Universität Bochum, 2013.
[91] Feng M. The family Berberidaceae: floral development morphology, embryology and systematics[D]. Beijing: Institute of Botany, CAS, 1998.