Articles

Radiogenic heat production of rocks from Zhangzhou, Southeast China and its implications for thermal regime of lithosphere

  • WANG Andong ,
  • SUN Zhanxue ,
  • LIU Jinhui ,
  • HU Baoqun ,
  • WAN Jianjun ,
  • YANG Lizhong
Expand
  • 1. State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China;
    2. College of Earth Sciences, East China University of Technology, Nanchang 330013, China;
    3. School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, China

Received date: 2015-08-31

  Revised date: 2015-09-30

  Online published: 2016-01-07

Abstract

Rock density, radioelement content and rock thermal conductivity of rock from the ground surface and drilling holes within Zhangzhou region, southeast China were measured. The results show that the weighted mean value of rock density was 2.60 g/cm3, in good agreement with the average density of granite worldwide. The average radiogenic heat production of the investigated granite was 3.7 μW/m3, which is apparently higher than that of volcanic rock, mafic dykes and sedimentary rock from the same region. What is more, the main heat production was sourced from the decay of U and Th. The average rock thermal conductivity was 2.83 W/mK, approaching that of the middle-upper crustal rock. Our new data, together with previous geological, geophysical and geothermal data, indicate that the mantle contributes more heat flow than the crust to the surface heat flow, i.e., Qm/Qc>1, thus Zhangzhou region is a typical region with cold crust and hot mantle type lithospheric thermal regime.

Cite this article

WANG Andong , SUN Zhanxue , LIU Jinhui , HU Baoqun , WAN Jianjun , YANG Lizhong . Radiogenic heat production of rocks from Zhangzhou, Southeast China and its implications for thermal regime of lithosphere[J]. Science & Technology Review, 2015 , 33(24) : 41 -45 . DOI: 10.3981/j.issn.1000-7857.2015.24.007

References

[1] Morgan P. The thermal structure and thermal evolution of the continen-tal lithosphere[J]. Physics and Chemistry of the Earth, 1984, 15: 107-193.
[2] Rybach L. Determination of heat production rate[M]//Hänel R, Rybach L, Stegena L. Handbook of Terrestrial Heat Flow Density Determina-tion. Kluwer, Dordrecht, 1988: 125-142.
[3] 赵平, 汪集旸, 汪缉安, 等. 中国东南地区岩石生热率分布特征[J]. 岩 石学报, 1995, 11(3): 292-305. Zhao Ping, Wang Jiyang, Wang Ji'an, et al. Characteristics of heat pro-duction distribution in SE China[J]. Acta Petrologica Sinica, 1995, 11 (3): 292-305.
[4] 王德滋, 周新民. 中国东南部晚中生代花岗质火山-侵入杂岩成因与 地壳演化[M]. 北京: 科学出版社, 2002. Wang Dezi, Zhou Xinmin. The genesis of Late Mesozoic granitic volca-nic-intrusive complex from SE China and its crustal evolution[M]. Bei-jing: Science Press, 2002.
[5] Li Z, Qiu J S, Yang X. A review of the geochronology and geochemistry of Late Yanshanian (Cretaceous) plutons along the Fujian costal area of southeastern China: Implications for magma evolution related to slab break-off and rollback in the Cretaceous[J]. Earth-Science Reviews, 2014, 128: 232-248.
[6] Zhou X M, Li W X. Origin of Late Mesozoic igneous rocks in Southeast-ern China: Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000, 326(3): 269-287.
[7] Li Z X, Li X H. Formation of the 1300-km-wide intracontinental oro-gen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model[J]. Geology, 2007, 35(2): 179-182.
[8] 庞忠和. 漳州盆地地热系统[D]. 北京: 中国科学院地质与地球物理研 究所, 1987. Pang Zhonghe. Zhangzhou basin geothermal system[D]. Beijing: Insti-tute of Geology and Geophysics, CAS, 1987.
[9] Rybach L, Bodmer P, Pavoni N, et al. Siting Criteria for heat extraction from hot dry rock: Application to Switzerland[J]. Pageoph, 1978, 116(6): 1211-1224.
[10] McLaren S, Sandiford M, Hand M, et al. The hot southern continent: heat flow and heat production in Australian Proterozoic terranes[J]. Geological Society of America Special Papers, 2003, 372(22): 151-161.
[11] Wang A D, Sun Z X, Hu B Q, et al. Guangdong, a potential province for developing Hot Dry Rock geothermal resource[J]. Applied Mechan-ics and Materials, 2014, 492: 583-585.
[12] Sun Z, Wang A, Liu J, et al. Radiogenic heat production of granites and potential for hot dry rock geothermal resource in Guangdong Prov-ince, Southern China[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[13] Joshua E O, Ehinola O A, Akpanowo M A, et al. Radiogenic heat pro-duction in crustal rock samples of Southeastern Nigeria[J]. European Journal of Scientific Research, 2008, 23(2): 305-316.
[14] Smithson S B, Decker E R. A continental crustal model and its geo-thermal implications[J]. Earth and Planetary Science Letters, 1974, 22 (3): 215-225.
[15] Pollack H N, Chapman D S. On the regional variation of heat flow, geotherms, and lithospheric thickness[J]. Tectonophysics, 1977, 38(3): 279-296.
[16] 马峰, 孙红丽, 蔺文静, 等. 中国EGS示范工程靶区选址与指标矩阵 评价[J]. 科技导报, 2015, 33(19): 49-53. Ma Feng, Sun Hongli, Lin Wenjing, et al. Target site selection and in-dexes matrix evaluation of EGS demonstration in China[J]. Science & Technology Review, 2015, 33(19): 49-53.
[17] McLennan S M, Taylor S R. Heat flow and the chemical composition of continental crust[J]. The Journal of Geology, 1996, 104(4): 369-377.
[18] 汪集旸, 黄少鹏. 中国大陆地区热流数据汇编[J]. 地质科学, 1988 (2): 196-204. Wang Jiyang, Huang Shaopeng. Compilation of heat flow data in the China continental area[J]. Scientia Geologica Sinica, 1988(2): 196-204.
[19] 汪集旸, 黄少鹏. 中国大陆地区热流数据汇编(第二版)[J]. 地震地质, 1990, 12(4): 351-366. Wang Jiyang, Huang Shaopeng. Compilation of heat flow data in the China continental area (2nd edition)[J]. Seismilogy and Geology, 1990, 12(4): 351-366.
[20] 胡圣标, 何丽娟, 汪集旸. 中国大地热流数据汇编(第三版)[J]. 地球物 理学报, 2001, 44(5): 612-624. Hu Shengbiao, He Lijuan, Wang Jiyang. Compilation of heat flow data in the China continental area (3rd edition)[J]. Chinese Journal of Geo-physics, 2001, 44(5): 612-624.
[21] Hu S, He L, Wang J. Heat flow in the continental area of China: Anew data set[J]. Earth and Planetary Science Letters, 2000, 179(2): 407-419.
[22] 周珣若, 陈安国, 宋新华, 等. 福建漳州花岗岩侵入体的Rb-Sr同位 素年龄及其成因的初步探讨[J]. 中国地质科学院南京地质矿产研究 所所刊, 1988, 9(2): 55-67. Zhou Xunruo, Chen Anguo, Song Xinhua, et al. Rb-Sr isotope ages and prelimary studies of genesis on Zhangzhou granitoid intrusive body, Fujian Province[J]. Bulletin of Nanjing Institute of Geological Mineral and Resources, 1988, 9(2): 55-67.
[23] 石耀霖, 朱元清, 沈显杰. 青藏高原构造热演化的主要控制因素[J]. 地球物理学报, 1992, 35(6): 710-720. Shi Yaolin, Zhu Yuanqing, Shen Xianjie. Tectonic processes and ther-mal evolution of the Qinghai-Xizang (Tibetan) Plateau[J]. Chinese Journal of Geophysics, 1992, 35(6): 710-720
[24] Nyblade A A, Pollack H N. A global analysis of heat flow from Pre-cambrian terrains: implications for the thermal structure of Archean and Proterozoic lithosphere[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 1993, 98(B7): 12207-12218.
[25] He L J. Thermal regime of the North China Craton: Implications for carton destruction[J]. Earth-Science Reviews, 2015, 140: 14-26.
[26] Shen W, Ling H, Li H, et al. The thermal history of the miarolitic granite at Xincun, Fujian Province, China[J]. Chinese Science Bulle-tin, 2000, 45(21): 1991-1995.
Outlines

/