[1] Janib S M, Moses A S, MacKay J A. Imaging and drug delivery using theranostic nanoparticles[J]. Advanced Drug Delivery Reviews, 2010, 62 (11): 1052-1063.
[2] Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery[J]. Chemical Society Reviews, 2010, 39(11): 4326-4354.
[3] Lammers T, Aime S, Hennink W E, et al. Theranostic Nanomedicine[J]. Accounts of Chemical Research, 2011, 44(10): 1029-1038.
[4] Gu Z, Yan L, Tian G, et al. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications[J]. Advanced Materials, 2013, 25(28): 3758-3779.
[5] Fan Z, Fu P P, Yu H, et al. Theranostic nanomedicine for cancer detection and treatment[J]. Journal of Food and Drug Analysis, 2014, 22 (1): 3-17.
[6] Muller R H, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50(1): 161-177.
[7] Soppimath K S, Aminabhavi T M, Kulkarni A R, et al. Biodegradable polymeric nanoparticles as drug delivery devices[J]. Journal of Controlled Release, 2001, 70(1/2): 1-20.
[8] Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue[J]. Advanced Drug Delivery Reviews, 2003, 55(3): 329-347.
[9] Vallet-Regi M, Balas F, Arcos D. Mesoporous materials for drug delivery[J]. Angewandte Chemie-international Edition, 2007, 46(40): 7548-7558.
[10] Veiseh O, Gunn J W, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging[J]. Advanced Drug Delivery Reviews, 2010, 62(3): 284-304.
[11] Tang F, Li L, Chen D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery[J]. Advanced Materials, 2012, 24 (12): 1504-1534.
[12] Yang P, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery[J]. Chemical Society Reviews, 2012, 41(9): 3679-3698.
[13] Cheng L, Wang C, Feng L, et al. Functional nanomaterials for phototherapies of cancer[J]. Chemical Reviews, 2014, 114(21): 10869-10939.
[14] Xu M H, Wang L H V. Photoacoustic imaging in biomedicine[J]. Review Of Scientific Instruments, 2006, doi: 10.1063/1.2195024.
[15] Wang L V, Hu S. Photoacoustic tomography: In vivo imaging from organelles to organs[J]. Science, 2012, 335(6075): 1458-1462.
[16] Liang X, Deng Z, Jing L, et al. Prussian blue nanoparticles operate as a contrast agent for enhanced photoacoustic imaging[J]. Chemical Communications, 2013, 49(94): 11029-11031.
[17] Shokouhimehr M, Soehnlen E S, Hao J H, et al. Dual purpose Prussian blue nanoparticles for cellular imaging and drug delivery: A new generation of T1-weighted MRI contrast and small molecule delivery agents[J]. Journal Of Materials Chemistry, 2010, 20(25): 5251-5259.
[18] Shokouhimehr M, Soehnlen E S, Khitrin A, et al. Biocompatible Prussian blue nanoparticles: Preparation, stability, cytotoxicity, and potential use as an MRI contrast agent[J]. Inorganic Chemistry Communications, 2010, 13(1): 58-61.
[19] Fu G, Liu W, Li Y, et al. Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance[J]. Bioconjugate Chemistry, 2014, 25(9): 1655-1663.
[20] Dumont M F, Yadavilli S, Sze R W, et al. Manganese-containing Prussian blue nanoparticles for imaging of pediatric brain tumors[J]. International Journal of Nanomedicine, 2014, 9: 2581-2595.
[21] Dumont M F, Hoffman H A, Yoon P R S, et al. Biofunctionalized gadolinium-containing Prussian blue nanoparticles as multimodal molecular imaging agents[J]. Bioconjugate Chemistry, 2014, 25(1): 129-137.
[22] Yang F, Hu S L, Zhang Y, et al. A hydrogen peroxide-responsive O2 nanogenerator for ultrasound and magnetic-resonance dual modality imaging[J]. Advanced Materials, 2012, 24(38): 5205-5211.
[23] Jia X, Cai X, Chen Y, et al. Perfluoropentane-encapsulated hollow mesoporous Prussian blue nanocubes for activated ultrasound imaging and photothermal therapy of cancer[J]. ACS Applied Materials & Interfaces, 2015, 7(8): 4579-4588.
[24] Fu G, Liu W, Feng S, et al. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy[J]. Chemical Communications, 2012, 48(94): 11567-11569.
[25] Cheng L, Gong H, Zhu W, et al. PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy[J]. Biomaterials, 2014, 35(37): 9844-9852.
[26] Li X D, Liang X L, Ma F, et al. Chitosan stabilized Prussian blue nanoparticles for photothermally enhanced gene delivery[J]. Colloids And Surfaces B-biointerfaces, 2014, 123: 629-638.
[27] Lian H Y, Hu M, Liu C H, et al. Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery[J]. Chem Commun (Camb), 2012, 48(42): 5151-5153.
[28] Jing L, Liang X, Deng Z, et al. Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer[J]. Biomaterials, 2014, 35(22): 5814-5821.
[29] Zhu W, Liu K, Sun X, et al. Mn2+-doped Prussian blue nanocubes for bimodal imaging and photothermal therapy with enhanced performance [J]. ACS Applied Materials & Interfaces, 2015, 7(21): 11575-11582.
[30] Zhang Z J, Wang J, Chen C H. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging[J]. Advanced Materials, 2013, 25(28): 3869-3880.
[31] Cai X, Jia X, Gao W, et al. A versatile nanotheranostic agent for efficient dual-mode imaging guided synergistic chemo-thermal tumor therapy[J]. Advanced Functional Materials, 2015, 25(17): 2520-2529.
[32] Huang Y M, Hu L, Zhang T T, et al. Mn3[Co(CN)6]2@SiO2 core-shell nanocubes: Novel bimodal contrast agents for MRI and optical imaging [J]. Scientific Reports, 2013, doi: 10.1038/srep02647.
[33] Kandanapitiye M S, Valley B, Yang L D, et al. Gallium analogue of soluble Prussian blue KGaFe(CN)6 center dot nH2O: Synthesis, characterization, and potential biomedical applications[J]. Inorganic Chemistry, 2013, 52(6): 2790-2792.
[34] Kandanapitiye M S, Wang F J, Valley B, et al. Selective ion exchange governed by the Irving-Williams series in K2Zn3Fe(CN)6 nanoparticles: Toward a designer prodrug for Wilson's disease[J]. Inorganic Chemistry, 2015, 54(4): 1212-1214.
[35] Perrier M, Kenouche S, Long J, et al. Investigation on NMR relaxivity of nano-sized cyano-bridged coordination polymers[J]. Inorganic Chemistry, 2013, 52(23): 13402-13414.
[36] Perrier M, Busson M, Massasso G, et al. Tl-201(+)-labelled Prussian blue nanoparticles as contrast agents for SPE/CT scintigraphy[J]. Nanoscale, 2014, 6(22): 13425-13429.
[37] Mukherjee S, Rao B R, Sreedhar B, et al. Copper Prussian blue analogue: investigation into multifunctional activities for biomedical applications[J]. Chemical Communications, 2015, 51(34): 7325-7328.