[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[2] Brus V V, Gluba M A, Zhang X, et al. Stability of graphene-silicon heterostructure solar cells[J]. Physica Status Solidi (a), 2014, 211(4): 843-847.
[3] Cui T, Lü R, Huang Z H, et al. Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping[J]. Journal of Materials Chemistry A, 2013, 1(18): 5736-5740.
[4] Fan G, Zhu H, Wang K, et al. Graphene/silicon nanowire schottky junction for enhanced light harvesting[J]. ACS Applied Materials and Interfaces, 2011, 3(3): 721-725.
[5] Li X, Fan L, Li Z, et al. Boron doping of graphene for graphene-silicon p-n junction solar cells[J]. Advanced Energy Materials, 2012, 2(4): 425-429.
[6] Liu X, Zhang X W, Yin Z G, et al. Enhanced efficiency of graphenesilicon schottky junction solar cells by doping with Au nanoparticles[J]. Applied Physics Letters, 2014, 105(18): 183901.
[7] Miao X, Tongay S, Petterson M K, et al. High efficiency graphene solar cells by chemical doping[J]. Nano Letters, 2012, 12(6): 2745-2750.
[8] Yang L, Yu X, Hu W, et al. An 8.68% efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts[J]. ACS Applied Materials and Interfaces, 2015, 7(7): 4135-4141.
[9] Song Y, Li X, Mackin C, et al. Role of interfacial oxide in highefficiency graphene-silicon schottky barrier solar cells[J]. Nano Letters, 2015, 15(3): 2104-2110.
[10] Jiao K, Duan C, Wu X, et al. The role of MoS2 as an interfacial layer in graphene/silicon solar cells[J]. Physical Chemistry Chemical Physics, 2015, 17(12): 8182-8186.
[11] Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: A new directgap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805.
[12] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150.
[13] Zhao G, Hou J, Wu Y, et al. Preparation of 2d MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation[J]. Advanced Optical Materials, 2015, 3(7): 937-942.
[14] Ohashi T, Suda K, Ishihara S, et al. Multi-layered MoS2 film formed by high-temperature sputtering for enhancement-mode nMOSFETs[J]. Japanese Journal of Applied Physics, 2015, 54(4S): 04DN08.
[15] Li H M, Lee D, Qu D, et al. Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide[J]. Nature Communications, 2015, 6: 6564.
[16] Miao J, Hu W, Jing Y, et al. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays[J]. Small, 2015, 11(20): 2392-2398.
[17] Lu C P, Li G, Mao J, et al. Bandgap, mid-gap states, and gating effects in MoS2[J]. Nano Letters, 2014, 14(8): 4628-4633.
[18] Lee C H, Lee G H, van der Zande A M, et al. Atomically thin p-n junctions with van der waals heterointerfaces[J]. Nature Nanotechnology, 2014, 9(9): 676-681.
[19] Cheng R, Li D, Zhou H, et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes [J]. Nano Letters, 2014, 14(10): 5590-5597.
[20] Tosun M, Fu D, Desai S B, et al. MoS2 heterojunctions by thickness modulation[J]. Scientific Reports, 2015, 5: 10990.
[21] Shanmugam M, Durcan C A, Yu B. Layered semiconductor molybdenum disulfide nanomembrane based schottky-barrier solar cells[J]. Nanoscale, 2012, 4(23): 7399-7405.
[22] Lee E W, Ma L, Nath D N, et al. Growth and electrical characterization of two-dimensional layered MoS2/SiC heterojunctions[J]. Applied Physics Letters, 2014, 105(20): 203504.
[23] Lopez-Sanchez O, Alarcon Llado E, Koman V, et al. Light generation and harvesting in a van der waals heterostructure[J]. ACS Nano, 2014, 8(3): 3042-3048.
[24] Ma X, Shi M. Thermal evaporation deposition of few-layer MoS2 films [J]. Nano-Micro Letters, 2013, 5(2): 135-139.
[25] Tan L K, Liu B, Teng J H, et al. Atomic layer deposition of a MoS2 film[J]. Nanoscale, 2014, 6(18): 10584-10588.
[26] Lee Y H, Zhang X Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 2012, 24(17): 2320-2325.
[27] Muratore C, Hu J J, Wang B, et al. Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition[J]. Applied Physics Letters, 2014, 104(26): 261604.
[28] Zhan Y, Liu Z, Najmaei S, et al. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate[J]. Small, 2012, 8(7): 966-971.
[29] Liu K K, Zhang W, Lee Y H, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates[J]. Nano Letters, 2012, 12(3): 1538-1544.
[30] Lin Y C, Zhang W J, Huang J K, et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization[J]. Nanoscale, 2012, 4(20): 6637-6641.
[31] Tao J, Chai J, Lu X, et al. Growth of wafer-scale MoS2 monolayer by magnetron sputtering[J]. Nanoscale, 2015, 7(6): 2497-2503.
[32] Qiao L, Wang P, Chai L, et al. Influence of the incident flux angles on the structures and properties of magnetron sputtered MoS2 films[J]. Journal of Physics D: Applied Physics, 2015, 48(17): 175304.
[33] Liu H, Ansah Antwi K K, Ying J, et al. Towards large area and continuous MoS2 atomic layers via vapor-phase growth: Thermal vapor sulfurization[J]. Nanotechnology, 2014, 25(40): 405702.
[34] Hao L, Liu Y, Gao W, et al. Electrical and photovoltaic characteristics of MoS2/Si p-n junctions[J]. Journal of Applied Physics, 2015, 117 (11): 114502.
[35] Wang L, Jie J, Shao Z, et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors[J]. Advanced Functional Materials, 2015, 25(19): 2910-2919.
[36] Li Y, Xu C Y, Wang J Y, et al. Photodiode-like behavior and excellent photoresponse of vertical Si/monolayer MoS2 heterostructures [J]. Scientific Reports, 2014, 4: 7186.
[37] Tsai M L, Su S H, Chang J K, et al. Monolayer MoS2 heterojunction solar cells[J]. ACS Nano, 2014, 8(8): 8317-8322.
[38] Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2011, 11(12): 5111-5116.
[39] Kim I S, Sangwan V K, Jariwala D, et al. Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2[J]. Acs Nano, 2014, 8(10): 10551-10558.
[40] Yim C, O'Brien M, McEvoy N, et al. Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry[J]. Applied Physics Letters, 2014, 104(10): 103114.