Reviews

Recent progress of biological imaging based on noble nanomaterials

  • DONG Xiawei ,
  • WANG Xuemei
Expand
  • School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210094, China

Received date: 2015-04-14

  Revised date: 2015-05-24

  Online published: 2016-02-04

Abstract

Noble metal nanomaterials, with the unique characteristics including light stability, strong optical signal, good bio-compatibility and so on, have incomparable advantages over other materials. They have been successfully utilized in various scientific and living areas, with broad application prospects in the area of life science and biological medicine, attracting more and more attention all over the world. This article simply summarizes the advantages and disadvantages of fluorescence imaging, Raman imaging, and the imaging principle of dark field imaging. The dark field imaging detecting scattered light of nanomaterials can eliminate effectively the background interference of sample, which has a lot of incomparable advantages. We review the latest research progress and prospect in biological imaging of noble metal nanomaterials. With the rapid development of nanometer composite technology and the improvement of detection means, noble metal nanomaterials will be brought from fundamental scientific research into practical application. And single molecular spectroscopy and optical microscopic imaging technology has made great progress, which is likely to bring new revolution in biological imaging characterization.

Cite this article

DONG Xiawei , WANG Xuemei . Recent progress of biological imaging based on noble nanomaterials[J]. Science & Technology Review, 2016 , 34(2) : 81 -85 . DOI: 10.3981/j.issn.1000-7857.2016.2.012

References

[1] Liu J W, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles[J]. Journal of the American Chemical Society, 2003, 125(22): 6642-6643.
[2] Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2 + ) in aqueous media using DNA-functionalized gold nanoparticles [J]. Angewandte Chemie International Edition, 2007, 46(22): 4093-4096.
[3] Ai K, Liu Y, Lu L. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula[J]. Journal of the American Chemical Society, 2009, 131 (27): 9496-9497.
[4] Li W, Liang C, Zhou W, et al. Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells[J]. The Journal of Physical Chemistry B, 2003, 107(26): 6292-6299.
[5] Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells[J]. Nature, 2006, 443(7107): 63-66.
[6] Jain J, Arora S, Rajwade J M, et al. Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use[J]. Molecular Pharmaceutics, 2009, 6(5): 1388-1401.
[7] Kumar K, Duan H, Hegde R S, et al. Printing colour at the optical diffraction limit[J]. Nature Nano, 2012, 7(9): 557-561.
[8] Ko S H, Park I, Pan H, et al. Direct Nanoimprinting of metal nanoparticles for nanoscale electronics fabrication[J]. Nano Letters, 2007, 7(7): 1869-1877.
[9] Hadjipanayis C G, Machaidze R, Kaluzova M, et al. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma[J]. Cancer Research, 2010, 70(15): 6303-6312.
[10] Zhu A, Qu Q, Shao X, et al. Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions[J]. Angewandte Chemie, 2012, 124 (29): 7297-7301.
[11] Yu J H, Kwon S H, Petrasek Z, et al. High-resolution three-photon biomedical imaging using doped ZnS nanocrystals[J]. Nature Materials, 2013, 12(4): 359-366.
[12] Ma N, Yang J, Stewart K M, et al. DNA-Passivated CdS Nanocrystals: Luminescence, bioimaging, and toxicity profiles[J]. Langmuir, 2007, 23 (26): 12783-12787.
[13] Lim S F, Riehn R, Ryu W S, et al. In vivo and scanning electron microscopy imaging of upconverting nanophosphors in caenorhabditis elegans[J]. Nano Letters, 2006, 6(2): 169-174.
[14] Chatterjee D K, Rufaihah A J, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals[J]. Biomaterials, 2008, 29(7): 937-943.
[15] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281(5385): 2013-2016.
[16] Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998, 281(5385): 2016-2018.
[17] Yezhelyev M V, Al-Hajj A, Morris C, et al. In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots[J]. Advanced Materials, 2007, 19(20): 3146-3151.
[18] Metz S, Bonaterra G, Rudelius M, et al. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro[J]. Eur Radiol, 2004, 14(10): 1851-1858.
[19] Shapiro E M, Skrtic S, Koretsky A P. Sizing it up: Cellular MRI using micron-sized iron oxide particles[J]. Magnetic Resonance in Medicine, 2005, 53(2): 329-338.
[20] Mei Q, Jiang C, Guan G, et al. Fluorescent graphene oxide logic gates for discrimination of iron (3+) and iron (2+) in living cells by imaging [J]. Chemical Communications, 2012, 48(60): 7468-7470.
[21] Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery[J]. Nano Research, 2008, 1(3): 203-212.
[22] He H, Xie C, Ren J. Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging[J]. Analytical Chemistry, 2008, 80(15): 5951-5957.
[23] Wang H, Huff T B, Zweifel D A, et al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(44): 15752-15756.
[24] Liu C L, Ho M L, Chen Y C, et al. Thiol-functionalized gold nanodots: Two-photon absorption property and imaging in vitro[J]. The Journal of Physical Chemistry C, 2009, 113(50): 21082-21089.
[25] Wang C, Li J, Amatore C, et al. Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells[J]. Angewandte Chemie International Edition, 2011, 50(49): 11644-11648.
[26] Wang J, Zhang G, Li Q, et al. In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters[J]. Scientific Reports, 2013, 1157(3): 1-7.
[27] Choi S, Yu J, Patel S A, et al. Tailoring silver nanodots for intracellular staining[J]. Photochemical & Photobiological Sciences, 2011, 10(1): 109-115.
[28] Yu J, Patel S A, Dickson R M. In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters[J]. Angewandte Chemie, 2007, 119(12): 2074-2076.
[29] Gao S, Chen D, Li Q, et al. Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters[J]. Scientific Reports, 2014, 1038(4): 1-6.
[30] Lee H, Lee K, Kim I K, et al. Fluorescent gold nanoprobe sensitive to intracellular reactive oxygen species[J]. Advanced Functional Materials, 2009, 19(12): 1884-1890.
[31] Seferos D S, Giljohann D A, Hill H D, et al. Nano-flares: Probes for transfection and mRNA detection in living cells[J]. Journal of the American Chemical Society, 2007, 129(50): 15477-15479.
[32] Park H, Lee S, Chen L, et al. SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods[J]. Physical Chemistry Chemical Physics, 2009, 11(34): 7444-7449.
[33] Chon H, Lee S, Yoon S Y, et al. Simultaneous immunoassay for the detection of two lung cancer markers using functionalized SERS nanoprobes[J]. Chemical Communications, 2011, 47(46): 12515-12517.
[34] Wang Z, Zong S, Yang J, et al. Dual-mode probe based on mesoporous silica coated gold nanorods for targeting cancer cells[J]. Biosensors and Bioelectronics, 2011, 26(6): 2883-2889.
[35] von Maltzahn G, Centrone A, Park J H, et al. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed nearinfrared imaging and photothermal heating[J]. Advanced Materials, 2009, 21(31): 3175-3180.
[36] Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry, 2007, 58(1): 267-297.
[37] Homola J. Surface plasmon resonance sensors for detection of chemical and biological species[J]. Chemical Reviews, 2008, 108(2): 462-493.
[38] Mayer K M, Hafner J H. Localized surface plasmon resonance sensors [J]. Chemical Reviews, 2011, 111(6): 3828-3857.
[39] Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes[J]. Chemical Reviews, 2005, 105(4): 1025-1102.
[40] Lee K J, Browning L M, Nallathamby P D, et al. In vivo quantitative study of sized-dependent transport and toxicity of single silver nanoparticles using zebrafish embryos[J]. Chemical Research in Toxicology, 2012, 25(5): 1029-1046.
[41] Lee K J, Nallathamby P D, Browning L M, et al. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos[J]. ACS Nano, 2007, 1(2): 133-143.
[42] Nallathamby P D, Lee K J, Xu X H. Design of stable and uniform single nanoparticle photonics for in vivo dynamics imaging of nanoenvironments of zebrafish embryonic fluids[J]. ACS Nano, 2008, 2 (7): 1371-1380.
[43] Xu X H, Brownlow W J, Kyriacou S V, et al. Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging[J]. Biochemistry, 2004, 43(32): 10400-10413.
[44] Xu X H, Chen J, Jeffers R B, et al. Direct Measurement of sizes and dynamics of single living membrane transporters using nanooptics[J]. Nano Letters, 2002, 2(3): 175-182.
[45] Huang X, El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society, 2006, 128(6): 2115-2120.
[46] Nan X, Sims P A, Xie X S. Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision[J]. ChemPhysChem, 2008, 9(5): 707-712.
[47] Jun Y W, Sheikholeslami S, Hostetter D R, et al. Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level[J]. Proceedings of the National Academy of Sciences, 2009, 106(42): 17735-17740.
[48] Lee C W, Chen M J, Cheng J Y, et al. Morphological studies of living cells using gold nanoparticles and dark-field optical section microscopy[J]. Journal of Biomedical Optics, 2009, 14(3): 034016-1-6.
[49] Wang S H, Lee C W, Chiou A, et al. Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images[J]. Journal of Nanobiotechnology, 2010, 8:33.
Outlines

/