Reviews

Influencing factors for particles settling velocity in vertical pipes

  • ZHAO Guoyan ,
  • LIN Chunping ,
  • HONG Changshou
Expand
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China

Received date: 2015-05-18

  Revised date: 2015-10-31

  Online published: 2016-02-04

Abstract

For the issue of "greater well depth" faced by deep mining activities, the influencing factors on the settling velocity of particle in the hydraulic lifting system have been studied. Based on the settlement mechanism of spherical particle in water, the settling velocity expressions of laminar area, transition area and turbulent area are respectively determined. A sensitivity analysis is carried out in terms of particle size, particle density and water temperature, and the influence of particle shape and its concentration on the settling velocity is discussed. The results show that in the laminar area and transition area, the sensitivities of particle size, particle density and water temperature to the settling velocity vary with the ratio of particle density to the water's; That in the turbulent area, the sensitivities of those influencing factors exhibit as particle density >particle size >water temperature; And that the actual settling velocities of irregular particles are less than those theoretical values of the spheroidal particle of same size. To make the results better fit engineering practice, the particle shape factor is employed to amend the differences between the theoretical values and the actual ones, and Richardson-Zaki formula is adopted in the hindered settling process.

Cite this article

ZHAO Guoyan , LIN Chunping , HONG Changshou . Influencing factors for particles settling velocity in vertical pipes[J]. Science & Technology Review, 2016 , 34(2) : 162 -166 . DOI: 10.3981/j.issn.1000-7857.2016.2.026

References

[1] 吴超. 金属矿山的安全与环境科技发展问题研究[J]. 有色金属科学与工程, 2012, 3(5): 1-7. Wu Chao. Safety and environment technology development of metallic mines[J]. Nonferrous Metals Science and Engineering, 2012, 3(5): 1-7.
[2] 高林, 韩克峰. 矿山地下开采矿石水力提升技术[J]. 山东冶金, 1996, 18(4): 1-5. Gao Lin, Han Kefeng. The teehnology of ore lifted by water-power for mining from underground[J]. Shandong Metallurgy, 1996, 18(4): 1-5.
[3] 凌胜, 贾炳国. 井下矿石水力提升的可行性[J]. 有色金属: 矿山部分, 1993(5): 16-19. Ling Sheng, Jia Bingguo. The feasibility of underground ore hydraulic lifting [J]. Nonferrous Metals: Mining, 1993(5): 16-19. .
[4] 李蘅. 深海采矿水力提升系统粗颗粒运动规律模拟研究[D]. 北京: 清华大学, 2003. Li Heng. Simulation of coarse particles motions in hydraulic lifting pipe of deep seabed mining system[D]. Beijing: Tsinghua University, 2003.
[5] 佟庆理. 两相流动理论基础[M]. 北京: 冶金工业出版社, 1982: 45-46. Tong Qingli. Theoretical basis of two-phase flow [M]. Beijing: Metallur-gical Industry Press, 1982: 45-46.
[6] 费祥俊. 浆体与粒状物料输送水力学[M]. 北京: 清华大学出版社, 1994: 74-76. Fei Xiangjun. The slurry and granular materials mechanics[M]. Beijing: Tsinghua University Press, 1994: 74-76
[7] Saltelli A, Ratto M, Tarantola S, et al. Sensitivity analysis for chemical models[J]. Chemical Reviews, 2005, 105(7): 2811-2828.
[8] 刘同友. 充填采矿技术与应用[M]. 北京: 冶金工业出版社, 2001: 82-83. Liu Tongyou. Filling Mining Technology and its Application[M]. Bei-jing: Metallurgical Industry Press, 2001: 82-83.
[9] 瓦斯普. 固体物料浆体管道输送[M]. 黄河水利委员会科研所译. 北京: 水利出版社, 1980: 45-46. Wasp E J. The solid material slurry pipeline transportation[M]. The Yellow River Conservancy Commission Research Institute. Beijing: Wa-ter Conservancy Press, 1980: 45-46.
[10] 姜龙. 粗颗粒垂直管水力提升速度与浓度的实验研究[D]. 北京: 清华大学, 2005. Jiang Long. Experiment study on lifting velocity and concentration of coarse particles for vertical hydraulic lifting[D]. Beijing: Tsinghua Uni-versity, 2005.
[11] 申焱华, 毛纪陵, 凌胜. 垂直管道固液两相流的最小提升水流速度 [J]. 北京科技大学学报, 1999, 21(6): 519-523. Shen Yanhua, Mao Jiling, Ling Sheng. Minimum lifting water velocity of solid-liquid two-phase flow in vertical pipe[J]. Journal of Universi-ty of Science and Technology Beijing, 1999, 21(6): 519-523.
[12] Richardson J F, Zaki W N. Sedimentation and fluidization: Part I[J]. Transactions of the institution Chemical Engineers, 1954, 32(1): 35-53.
[13] 夏震寰, 汪岗. 无粘性均质颗粒在细颗粒悬浮液中的沉降[J]. 泥沙研究, 1982(1): 14-23. Xia Zhenhuan, Wang Gang. The settling of non-cohesive particles in a flocculated suspension[J]. Journal of Sediment Research, 1982(1): 14-23.
[14] 钱宁, 万兆惠. 泥沙运动力学[M]. 北京: 科学出版社, 1983: 62-66. Qian Ning, Wan Zhaohui. The sediment transport mechanics [M]. Bei-jing: Science Press, 1983: 62-66.
[15] Wallis G B. One-dimensional two-phase flow[M]. New York: McGraw-Hill, 1969. 179-183.
[16] Maude A D, Whitmore R L. A generalized theory of sedimentation[J]. British Journal of Applied Physics, 1958, 9(12): 477-482.
[17] 赵利安. 大颗粒浆体管内流动规律研究[D]. 辽宁: 辽宁工程技术大学, 2011. Zhao Li'an. Study on flow law of large particle slurry in pipeline[D]. Liaoning: Liaoning Technical University, 2011.
Outlines

/