This paper analyzes the demand and the characteristics of oil companies in the big data era on basis of summarizing the background of the big data era. Combining with the information system of the CNPC, the production and operation simulation system of oil companies is developed. The overall framework, the technology roadmap, the data connotation, the function and the application prospect of the upstream business production and operation simulation system on the big data platform are demonstrated. The system will play a demonstrative and instructive role for the business information platform construction of oil companies in the big data era.
QU Haixu
,
ZHANG Hujun
,
CUI Haiqing
. A new production operation simulation system and its application to oil companies based on the big data theory[J]. Science & Technology Review, 2016
, 34(2)
: 178
-183
.
DOI: 10.3981/j.issn.1000-7857.2016.2.029
[1] Big data: The Next Frontier for Innovation, Competition, and Productivity [EB/OL]. [2013-01-24]. http: //www. mckinsey. com/ insights/mgi/ research/technology_ and_ innovation/big_ data_ the_ next_ frontier_ for_ innovation
[2] 林昆勇. 大数据时代——未来人类社会发展的大变革[J]. 科技导报, 2014, 32(24): 83-84. Lin Kunyong. Age of Big Data:the big change of human society development in the future [J]. Science & Technology Review, 2014, 32 (24): 83-84.
[3] 李国杰, 程学旗. 大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J]. 中国科学院院刊, 2012, 27(6): 649-650. Li Guojie, Cheng Xueqi. The big data research: Important strategy field of future technology and economic society development-Research status and scientific thinking of big data[J]. Bulletin of Chinese Academy of Sciences, 2012, 27(6): 649-650.
[4] 段鸿杰, 马承杰, 刘焕宗. 油田信息化关键技术研究及其应用[J]. 石油科技论坛, 2015, 34(3): 39-43. Duan Hongjie, Ma Chengjie, Liu Huanzong. Study and application of key technology for oilfield information[J]. Oil Forum, 2015, 34(3): 39-43.
[5] Grobelnik M. Big-data computing: Creating revolutionary breakthroughs incommerce,scienceandsociety[R/OL]. [2012-10-02].http://videolectures. net/eswc2012_grobelnik_big_data/.
[6] Barwick H. The″four Vs″ of Big Data. Implementing Information Infrastructure Symposium[EB/OL]. [2012-10-02]. http// www.computerworld.com.au/article/396198/iiis_four_vs_big_data/.
[7] IBM. What is big data?[EB/OL]. [2012-10-02]. http://www-01.ibm.com/ software/data/bigdata/.
[8] 陈潇洋. 电商如何拥抱大数据——以京东、阿里为例[J]. 当代经济, 2015, 51(18): 64-65. Chen Xiaoyang. How does Electronic Commerce embrace big data: Take JD and Alibaba for instance[J]. Contemporary Economics, 2015, 51 (18): 64-65.
[9] 李瑞琴, 郑建国. 大数据研究:现状、问题及趋势[J]. 现代商业, 2013, 26(36): 107-108. Li Ruiqin, Zheng Jianguo. The big data research: current situation, problems and tendency[J]. Modern Business, 2013, 26(36): 107-108.
[10] 李建中, 刘显敏. 大数据的一个重要方面:数据可用性[J]. 计算机研究与发展, 2013, 50(6): 1148-1162. Li Jianzhong, Liu Xianmin. One important aspect of big data: the availability of data[J]. Journal of Computer Research and Development, 2013, 50(6): 1148-1162.
[11] 许坤, 胡文广, 王世洪, 等. 低油价下我国石油企业发展策略探讨[J]. 石油科技论坛, 2015, 34(4): 3-4. Xu Kun, Hu Wenguang, Wang Shihong, et al. Development strategy of China's petroleum enterprises under background of low oil price[J]. Oil Forum, 2015, 34(4): 3-4.
[12] 曲德斌, 李丰, 陈新彬, 等. 油气开发规划优化方法及应用[M]. 北京: 石油工业出版社, 2013. Qu Debin, Li Feng, Chen Xinbin, et al. Oil and gas development plan optimization method and its application[M]. Beijing: Petroleum Industry Press, 2013.
[13] 曲德斌, 武若霞. 油田开发规划科学预测的理论和实践[J]. 石油学报, 2002, 23(2): 38-42. Qu Debin, Wu Ruoxia. Optimum study and practice of oilfield development planning[J]. Acta Petrolei Sinica, 2002, 23(2): 38-42 .
[14] 刘志斌, 丁辉, 高珉, 等. 油田开发规划产量构成优化模型及应用[J]. 石油学报, 2004, 25(1): 62-65. Liu Zhibin, Ding Hui, Gao Min. Optimal model for oil production composition of oilfield development programming and its application [J]. Acta Petrolei Sinica, 2004, 25(1): 62-65.
[15] 任家军. 高油价下原油资源及生产方案优化的探讨[J]. 石油炼制与化工, 2007, 38(2): 51-53. Ren Jiajun. The discussion of oil resource and production project optimization under high oil price[J]. Petroleum Processing and Petrochemicals, 2007, 38(2): 51-53.