There exists large seasonal difference in entrance airflow temperature in mine ventilation. This paper tested temperature variation in roadway ventilation in different seasons, and established a mathematical heat transfer model of the surrounding rock and airflow to numerically simulate their heat transfer characteristics. The results show that the airflow exchanges heat with the surrounding rock along its path in the roadway, leading to continuous increase of the airflow temperature, which increases slowly in the working face. The numerical simulation results are consistent with the measured results. The variation of airflow temperature is significantly affected by seasonal difference, and the lower the airflow temperature at the entrance is, the larger the temperature change is under the same airflow distance in the roadway. This study reveals the heat transfer characteristics of mine ventilation and may provide references for ventilation cooling technologies.
YUE Gaowei
,
LI Minmin
,
XU Mengfei
. Heat transfer characteristics of seasonal ventilation and surrounding rock in deep mines[J]. Science & Technology Review, 2016
, 34(2)
: 195
-199
.
DOI: 10.3981/j.issn.1000-7857.2016.2.032
[1] 孙树魁, 张树光. 埋深对井巷温度场分布影响的研究[J]. 辽宁工程技术大学学报, 2003, 22(3): 301-302. Sun Shukui, Zhang Shuguang. Distribution rule of temperature field with burying depth in heat harmful mine[J]. Journal of Liaoning Technical University, 2003, 22(3): 301-302.
[2] Su Zhaogui, Jiang Zhongan, Sun Zhangqiang. Study on the heat hazard of deep exploitation in high-temperature mines and its evaluation index [J]. Procedia Earth and Planetary Science, 2009(1): 414-419.
[3] 舍尔巴尼A H. 矿井降温指南[M]. 黄翰文, 译.北京: 煤炭工业出版社, 1982: 125. Шербань А Н. The mine cooling guide[M]. Huang hanwen, trans. Beijing: China coal Industry Publishing House, 1982: 125.
[4] 平松良雄.通风学[M]. 刘运洪, 译. 北京: 冶金工业出版社, 1982: 59-109. Hiramatsuyoshio I. Sturdy of ventilation[M]. Liu Yunhong, trans. Beijing: China Metallurgical Industry Press, 1982: 59-109.
[5] 岑衍强, 胡春胜, 候祺棕. 井巷围岩与风流间不稳定换热系数的探讨 [J]. 辽宁工程技术大学学报, 1987, 6(3): 105-113. Cen Yanqiang, Hu Chunsheng, Hou Qizong. Investigation into unsteady heat transfer coefficient K between the surrounding rock of mine wells or lanes and airflow[J]. Journal of Liaoning Technical University, 1987, 6(3): 105-113.
[6] 孙勇, 王伟. 基于Fluent的掘进工作面通风热环境数值模拟[J]. 煤炭科学技术, 2012, 40(7): 31-34. Sun Yong, Wang Wei. Numerical simulation on thermal environment of ventilation for mine roadway heading face based on fluent software[J]. Coal Science and Technology, 2012, 40(7): 31-34.
[7] 赵成龙, 陈喜山. 基于Fluent的独头巷道通风降温的数值模拟研究 [J]. 现代矿业, 2011(2): 33-36. Zhao Chenglong, Chen Xishan. Study on numerical simulation of ventilation and temperature drop in heading face based on fluent[J]. Modern Mining, 2011(2): 33-36.
[8] 杨德源, 杨天鸿. 矿井热环境及其控制[M]. 北京: 冶金工业出版社, 2009. Yang Deyuan, Yang Tianhong. Thermal environmental and its control in mine[M]. Beijing: Metallurgical Industry Press, 2009.
[9] 孙浩. 深井采空区和废旧巷道风流预冷降温研究[J]. 金属矿山, 2012 (11): 135-137. Sun Hao. Research on the air pre-cooling of deep mine's goaf and old roadway[J]. Metal Mine, 2012(11):135-137.
[10] 刘景秀, 李慧, 周磊. 干燥巷道围岩传热对平巷风流温度影响研究 [J]. 金属矿山, 2011(8):147-150. Liu Jingxiu, Li Hui, Zhou Lei. Influences of wall rock heat transmitting on airflow temperature in dry roadway[J]. Metal Mine, 2011(8): 147-150.
[11] 高建良, 魏平儒. 掘进巷道风流热环境的数值模拟[J]. 煤炭学报, 2006, 31(2): 201-205. Gao Jianliang, Wei Pingru. Numerical simulation of the thermal environment at working face of diving airway[J]. Journal of China Coal Society, 2006, 31(2): 201-205.
[12] 周西华, 王继仁, 单亚飞, 等. 掘进巷道风流温度分布规律的数值模拟[J]. 中国安全科学学报, 2002, 12(2): 19-23. Zhou Xihua, Wang Jiren, Shan Yafei, et al. Numerical simulation of the rule of airflow temperature distribution in drifting tunnel[J]. China Safety Science Journal, 2002, 12(2):19-23.